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Chapter 13 

A new method for estimating age-at-death structure  

Henri Caussinus and Daniel Courgeau 

 

13.1 Introduction 

The previous chapter presents the main methods hitherto recommended for estimating a 

population’s age structure. This chapter proposes a new method based on a precise statistical 

model taking into consideration the essential specificity of the data upon which the estimation 

is based. 

First the notation, which is basically that of the previous chapter. We denote ijp  the 

probability that an individual taken at random from the study population belongs to age class j 

(j = 1, …, c) and stage i (i  = 1, …, l) of a given indicator; the sum of the ijp  with respect to i 

is denoted 
jp  (the probability that an individual is aged j), the sum of the ijp  with respect to 

j is denoted 
i  (the probability that an individual is at stage i); the conditional probability of 

stage i being at age j is denoted 
ji

p . These various probabilities are positive and satisfy the 

equations  
j

j
i

i p 1  and 1
i

ji
p for all values of j. They are also connected by the 

following equation: 

 i
j

jii pp   for all values of  i  = 1, …, l                                                                [13.1]         

 

In practice, the estimation must be made with data nij, the number of observations of stage i 

and age j in a reference base (i  = 1, …, l and j = 1, …, c), and mi, the number of observations 

of stage i at the site in question (i  = 1, …, l; mm
i

i  ): these data are shown in Tables 12.5 

and 12.6  in the previous chapter. The invariance hypothesis assumes that the probability 

ji
p of stage i occurring at age j is the same for any population; it is possible therefore to 

calculate these conditional probabilities from the reference data even if they come from 

another population. Consequently, the model is parametered by 
ji

p  and 
jp  , with the 

i  

being deduced if necessary from equation [13.1]; the parameters of interest are clearly the jp , 

whereas the 
ji

p  are only of intermediate value. 

The various proposals mentioned in the previous chapter do not take fully into consideration 

the variability of some of the observations: for example, the IALK method replaces each 
ji

p  

by jij nn .  as if this quantity were fixed and not random
1
, and Bocquet-Appel and Bacro’s 

method (2008) does not fully consider the random nature of the mi, since the results of the 

estimation depend solely on the mi/m ratios (it is clear that the size of sample m affects the 

                                           
1
 The IALK method can be modified to take account of this randomness. One proposal is 

given in Appendix B; while this does improve the method in some ways, it may weaken it in 

others, which confirms our view that more radical changes in viewpoint are necessary. 
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precision of the estimates, i.e., the confidence intervals). Furthermore, except for Bocquet-

Appel and Bacro’s method, the procedures proposed do not address the specific nature of the 

problem at hand. One does not estimate just any set of probabilities but rather a distribution of 

ages at death for a group of individuals about whom one may even have more precise specific 

information. If we also consider that the data available are usually scarce, this specific 

information is all the more valuable. This may also be concluded empirically from the high 

instability of most of the methods proposed up to now. 

All these points have convinced us of the utility of introducing the Bayesian method we 

present in Section 13.2. A few simulations in Section 13.3 show that this method appears to 

effectively replace most of the former methods; they are also used in the discussion of certain 

questions of calibration. Section 13.4 addresses particular examples and provides 

comparisons with other approaches from a new angle. 

One final point concerns vocabulary. Some methods in the literature may appear to be 

Bayesian in so far as they make use of the so-called Bayes formula or introduce a priori 

considerations into the resolution of estimation problems, but the paradigm on which they are 

based remains frequentist.
2
 The method we present here, on the other hand, is Bayesian in the 

sense most often used in statistics: it is considered that the parameters themselves are random, 

with a probability distribution, called prior, chosen by the user to reflect his(her) knowledge 

(and ignorance) before the observation; this distribution is then corrected in response to the 

observations to achieve a posterior distribution, which is the observation-based probability 

distribution of the parameters, and, more specifically in our case, the posterior distribution of 

the parameters of interest pj (j = 1, …,c). 

 

13.2. A Bayesian estimation method 

 

13.2.1. Model and principle 

It is natural to suppose that the frequencies mi (i  = 1, …,l) observed on the site for various 

stages are the observed values of a multinomial distribution whose parameters πi are linked to 

the pj and 
ji

p  according to equation [1]. We shall use these parameters to pursue the 

modelling. 

We denote by G the prior density of parameters ji
p , i = 1,…, l and j = 1,..., c (we shall see 

how G can be expressed in Section 2.2) and assume that the parameters pj (j = 1,…, c) have a 

prior density g (also discussed in Section 2.2) and are independent of the 
ji

p . 

If we denote by M the vector of mi, P the vector of  
ji

p  and p the vector of pj, the joint 

density of (M, P, p) will be f given by 

 
im

i j
jij

i
i
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m
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2
 This is true of Bocquet-Appel and Bacro’s method (2008), which takes account of the nature 

of the probabilities to be estimated by reducing the parametric space of the standard 

framework. 
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where the index i always goes from 1 to l and the index j from 1 to c. 

The marginal density of the pair (M, p) is 

 dPpPMf ,,
 

and the marginal density of M is 

  dPdppPMf ,,  

whereby the integrals are taken over the variation domains of P or p and P, which are a 

simplex (for p) or a product of simplexes (for P). 

The conditional density of p, given M, is therefore 

 
 



dPdppPMf

dPpPMf

,,

,,
 

This is the posterior density of pj  (j = 1, …,c) on which the Bayesian estimation will be 

based. 

For example, one may have the posterior mean of pj  

 

 



dPdppPMf

dPdppPMfp j

,,

,,

 

More generally, the conditional expectation given M of a function  of p will be given by 

   

 


dPdppPMf

dPdppPMfp

,,

,,
                                                                                        [13.2] 

                                                        

     

We thus obtain, for example, the kth-order moment of pj with φ(p)= k
jp  . Taking for  p  the 

function that equals 0 for pj  > x and 1 for pj  <  x (indicator variable of the event xp j  ), we 

express the posterior distribution function for pj at point x. 

The various integrals in expression [2] may be evaluated by a Monte Carlo method as 

follows. 

We denote  cXXX ,,1   a random vector with density distribution g and Y a family of c 

vectors  jljj YYY ,,1   (j = 1,…,c), whose joint distribution is independent of X and admits 

density G. We verify that expression [2] equals 
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
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Let us generate S independent sets of such random vectors (X,Y), with s (s = 1,…,S) 

representing the iterations. By virtue of the law of large numbers, if S is large enough, the 

expression above is approximated by 



 4 

 

  



























S

s i

m

j
ijsjs

S

s i

m

j
ijsjss

i

i

YX

YXX

1

1

)(

 

This supplies the posterior expectation of each ph (h = 1, … ,c) – which can be taken as a 

point estimate – or the posterior variance useful for characterising the accuracy of the 

estimate. The same principle can be applied to evaluate cross-moments, such as the 

covariance matrix of the posterior distribution of the ph parameters. The posterior distribution 

function of a ph parameter can be used, for example, to calculate intervals containing that ph 

with a given probability, known as credibility intervals, which are the Bayesian equivalent of 

the confidence intervals of the standard system. 

13.2.2. Use in practice 

13.2.2.1. Choice of prior distributions 

a. Density G 

The only source of information on the conditional probabilities 
ji

p   is the reference data. If 

they are raw data merely obtained by recording the stage frequencies on a sample of skeletons 

of known ages, we can logically conclude that, for each age class j (j = 1,…,c), the 

frequencies nij are the observed values of a multinomial distribution with a total nj and 

probabilities 
ji

p (i = 1,…,l). Adopting a prior distribution for the 
ji

p  probabilities, we 

deduce the  conditional distribution given the reference data. We take it, in turn, as the prior 

distribution of the 
ji

p  probabilities in the final model. Given the absence of supplementary 

information on these 
ji

p  probabilities beyond what is contained in the reference data, it 

makes sense to adopt a uniform distribution as the prior distribution of the
ji

p   probabilities 

for each j. For a given j, we find a posterior distribution of the 
ji

p  probabilities that 

represents a Dirichlet distribution (see Box 9) of parameters αij = nij + 1 (i = 1,…,l). Density G 

is then the product of c Dirichlet densities, namely 

 

 






i j

ji

i j
ij

j
j

ijppG
1

.

)(






 

In practice, the raw data may be “processed” in various ways (for example, in order to achieve 

the right weighting between male and female samples), so that their distribution is no longer 

strictly multinomial. However, the prior G as defined above appears still to hold, since the 

multinomial nature of the reference data is more an indication than a necessity for arriving at 

that distribution. 

The choice of G may be refined in various ways. For example, in order to avoid excessive 

confidence in the reference data, the αij may be multiplied by a “reducing” coefficient r (0 < r 

< 1) with a choice of αij = r(nij + 1), which does not affect the prior mean values of  
ji

p  but 

increases the prior variances, thereby expressing the degree of doubt. These variances are 

roughly multiplied by 
r

1
 ; note that it is very broadly equivalent to assume that the nij are 
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multiplied by r, another way of reducing the information contained in the reference data since 

it amounts to assuming that the relative frequencies observed in the data reference are retained 

but taken from a smaller sample.  

 

 

           Box 13.1. The Dirichlet distribution 

Let D be the subset of 
k  defined by: 

  1,...,10,...,
1

1  


k

i
iik xandkiallforxDxxx . 

and  kaaa ,...,1  a vector of strictly positive real numbers. 

The random vector  kXXX ,...,1  follows a Dirichlet distribution with parameter a 

if its probability density d is such that: 

 
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where 


k

i
iaa

1
.  and Γ is the Euler’s Gamma function defined by 




0

1)( dxxep px . 

Note that d is constant over D (uniform distribution) when 1ia  for all i. The 

marginal distribution of iX  is Beta with parameters  ii aaa ., . The moments of iX  are: 

 
.a

a
XE i

i   

   
 1

.1

..

2






aa

aa
XE ii

i    ,  
 
 1.

2
.

.






aa

aaa
XVar ii

i  

More generally, the moment of order h  1h  is: 

  









1

0 .

h

j

ih
i
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ja
XE  

We have also, for ji   :  
 

 
 11

.
2
... 





aa
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XXCovand

aa
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XXE

ji

ji

ji

ji . 

 

Remarks 

1. The iX  means, 
.a

a
e i

i  , are proportional to the ia ; they remain unchanged if the ia  

are all multiplied by the same positive number s. We can write:  
 

1

1

. 




a

ee
XVar ii

i  ; 
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hence, for equal means, the variances are larger when the ia  are smaller: if ia  is 

multiplied by s, then  iXVar  is multiplied by 
.

.

1

1

as

a




, a decreasing function of s (if .a  

is large enough, this is almost equivalent to multiplying  iXVar  by 
s

1
). 

2. In the Bayesian statistical framework, one says that the Dirichlet distribution is 

conjugate to the multinomial one; when the prior distribution of the parameters of a 

multinomial law is Dirichlet, the posterior distribution is another Dirichlet distribution 

whose parameters are obtained by adding the vector of observed numbers to the 

parameter vector of the prior. 

 

b. Density g 

The choice of the prior distribution for the pj parameters is a trickier matter. We give our 

preferred method first, which will be systematically used in this chapter. But we shall also 

briefly mention other possibilities, some of which merit further examination. 

As there is no clearly designated “class” of distributions from which to select the prior 

distribution, the most sensible course is to opt for a Dirichlet distribution, which is well suited 

to probability vectors. This leaves the problem of choosing the distribution parameters, say 

(β1,…, βc). In the absence of specific information, we can, as above, choose a uniform 

distribution and take βj = 1 for all j. This is a “neutral” choice and may sometimes be justified. 

It also yields reasonable results with simple examples. However, in paleodemography, other 

choices would appear to be preferable as certain information is naturally available. We can, 

for example, take a “standard” mortality distribution and calculate the probabilities for each of 

its age classes. The class probabilities become the means of the prior distribution. This gives 

the parameters βj up to a proportionality coefficient (see Box 9), i.e. the βj / β.  values, where 

β.  is the sum of the βj parameters over j = 1,…,c. The remaining step is to choose β. , i.e. in 

practice, the prior variances. Note that the variances need to be relatively large in order to 

express the fact that the prior means are not very reliable and that the prior distribution should 

not play a dominant role – in other words, that the family of possibilities envisaged covers a 

broad field. Hence β.  should be fairly small, say, below unity or barely above. We shall see 

that this is indeed the case in the simulations examined below. 

Note that the prior means may be seen as “test” values: if the data are scarce and the estimates 

consequently imprecise, it is helpful to use the posterior distribution qualitatively by 

observing in which direction these means move, i.e. how the data “correct” the prior values. 

This principle for the choice of the prior distribution may be extended in a number of ways. 

For example, instead of choosing a standard mortality distribution as the basis for 

constructing the prior distribution, one may choose a mix of two “standard” distributions, 

leading to a mix of two Dirichlet distributions. These might be the mix (in carefully chosen 

proportions) of a routine mortality distribution (attrition) and a catastrophic distribution. 

Clearly, quite different approaches are also possible, such as, along the lines of Bocquet-

Appel and Bacro’s proposals (2008), defining the prior distribution as a uniform distribution 

on a finite set of distributions corresponding to standard mortality distributions. We have 

examined this in Caussinus and Courgeau (2010), together with the comparison of our 

method with that of Bocquet-Appel and Bacro. As standard mortality distributions, rather 

than the “artificial” distributions proposed by these authors, one may consider the 
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distributions used to construct the pre-industrial standard. This deserves further research; 

however, this type of prior distribution is likely to place too much weight on routine mortality 

and be less effective in identifying specific situations of interest. Even if a Dirichlet prior as 

described is not necessarily optimal, it does provide a flexible general approach that is easy to 

implement: it is therefore the only one we consider below. 

13.2.2.2. Posterior distribution and credibility intervals 

Earlier, we saw how to calculate the posterior distribution function for each pj  point by point. 

The posterior density for each pj can be numerically derived and then appropriately smoothed. 

A graphical display of the densities may help in interpreting the numerical results. In some 

cases, the posterior density of each pj can be approximated by a Beta density with the same 

mean and variance, which, for example, simplifies the evaluation of densities. Approximation 

quality can be controlled to a certain extent via higher-order moments: one can check the 

proximity of the beta distribution’s third- and fourth-order moments with respect to the 

corresponding moments of the “true” posterior distribution, easily calculable by simulation, as 

seen above. Note, however, that this type of approximation is not always valid and must be 

used with care, and avoided in those cases where exact calculations can readily be performed. 

After calculating the posterior distribution function for each pj, we can determine α-credible 

intervals (Robert, 2006, p. 278) in which a pj parameter has a probability 1 – α conditional 

upon the observations. It is preferable to use the exact posterior distribution function, but in 

some cases the approximation by beta distribution mentioned above
3
 is acceptable. 

Finally, note that it is extremely inadvisable to use an interval of the “mean plus or minus one 

(or two) standard deviations” type because the posterior distribution is, in most cases, highly 

asymmetric. 

13.2.2.3. Size of the reference data table 

System [13.1] described in Section 13.1 is undetermined if the number of rows (stages) l is 

smaller than the number of columns c (ages). In other words, the parameters of interest are not 

identifiable, given that several values lead to the same distribution of observable samples. The 

Bayesian method avoids the difficulty by starting with a prior distribution, and the aim is 

simply to make it change by means of the data. The posterior distribution steers us towards a 

distribution of the unknown parameters, which is wholly compatible with the fact that they 

are not completely determined. This method can therefore be used with l < c. Clearly, the 

posterior distribution can be somewhat dispersed, which merely reflects the indeterminacy 

inherent in the situation. 

13.3. Brief simulation study 

The following examples, taken from a wider study, are intended to illustrate the properties of 

the recommended Bayesian method and to specify certain points in the choice of parameters 

for the prior distributions. The first two examples are elementary and do not refer specifically 

to the nature of the underlying application, although they are described in the “language of 

paleodemography” (ages, stages) for the sake of consistency and to simplify explanation. The 

third and fourth examples are more directly connected to applications in paleodemography. In 

order to compare the Bayesian method with frequentist methods, we only consider the point 

estimates it provides with the posterior mean.  

                                           
3
 One example is the set of data processed in Section 4. But there are cases where this 

approximation is highly unsatisfactory: an example of a bimodal posterior distribution is even 

given in Séguy, Caussinus, Courgeau and Buchet (2012). 
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In all events, we start from a population distributed by two discrete features with l (in lines) 

and c (in columns) classes respectively. We assume as known the probabilities pij that an 

individual will be located in line i and column j. We then simulate a large number R of 

situations, taking each time a multinomial sample with l categories and probabilities πi in 

order to simulate the site data and also c multinomial samples with, for the jth, the probability 

ji
p  for the ith class, in order to simulate the reference data. Each repetition leads to estimates 

of the probabilities pj  (the desired structure by age) by various methods. 

In Examples 1, 2 and 3, we evaluate the least-squares regression method, the IALK method 

(which we prefer to call “Maximum Likelihood 1”), the Maximum Likelihood 2 method 

described in Box 10, and the proposed Bayesian method, by comparing the estimates found 

with the true values of the parameters, known in this case. These results are given both 

graphically in the form of frequency histograms for the estimated probability of being in one 

of the age groups, and in the form of standard summaries: mean, standard deviation and mean 

squared error. We know that the mean squared error of an estimator X of the real parameter  

equals the expected value of the square of the X- difference, or E[(X-)
2
] = Var(X) + E[(X-

E(X))
2
]; it accounts therefore both for the variance of the estimator, the first term in the sum 

above, and for its bias, the second term in the sum. 

In Examples 3 and 4, we add the comparison with the Bocquet-Appel and Bacro method 

(2008), since its restriction of parametric space only becomes fully meaningful with 

paleodemographic data; in both examples we have chosen a breakdown into age classes 

compatible with the authors’ “prior” datasets. In these larger examples, the quality of results 

is examined with an overall criterion of distance between the vector of true probabilities and 

the vector of estimated probabilities. In fact, two criteria are used: the sum of mean squared 

errors obtained for the various age classes (“total MSE”) and an analogous sum weighted by 

the true probabilities [as in a chi-square test], (“relative MSE”). 

Example 1 

We first take the two-row two-column example from the previous chapter, drawing 

multinomial samples of 20 by the probabilities considered in that chapter:  as conditional 

probability (reference) for Line 1 we have 0.667 for Column 1 and 0.25 for Column 2; the 

marginal probability for Line 1 is 0.6. There is only a single parameter to be estimated in this 

case, for example, the probability for Column 1, which we know to be 0.84. We run 1,000 

iterations, obtaining different samples. Since l = c, equivalent results are obtained for the 

“corrected” regression (i.e., least squares subject to positivity constraint) and Maximum 

Likelihood 1 (IALK). 

“Ordinary” regressions with no positivity constraint run on each of these samples gave 347 

“estimates” greater than unity, which is understandable since the true probability is fairly 

close to unity, and also 11 negative values, which is more surprising. In fact, there is a wide 

dispersion of results (standard deviation 0.63) around a mean close to the true value, but 

which hardly make sense. Correcting the higher estimates to unity and the negative ones to 

zero, the mean obtained is 0.78, standard deviation 0.25, and mean squared error 0.06. The 

histogram of estimated values is given in Figure 69 (left). 

 

Box 10. Another maximum likelihood approach: ML2 

Let us consider the following statistical model which takes into account the random character 

of all the data. The set of parameters is the set of probabilities ijp  (i  = 1, …, l and j = 1, …, 
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c); their sums over i are denoted 
jp  while the sums over j are denoted 

i . For each  j 

 cj ,,1 , the nij  li ,,1  are the observed frequencies of a multinomial distribution 

with l categories, the total number of trials being nj and the cell probabilities pi/j = pij/pj 

 li ,,1  ; the frequencies mi (i=1,…l) follow a multinomial distribution with l categories, 

total number of trials m and cell probabilities πi   li ,,1 ; these c+1 multinomial 

distributions are independent. Up to an additive constant, the log-likelihood is: 

                          i

i

ijij

i j

ij mppn lnlnln    

Under the usual constraints on the set of probabilities ijp it can be shown that this function has 

a unique maximum, either inside the parameter space or on its boundary. In both cases, this 

maximum likelihood solution can be obtained by a suitable algorithm, for instance by the 

constrOptim procedure in the R package (R Development Core Team, 2008). We shall call 

this estimating method “Maximum Likelihood 2” (ML2). 

In practice, the parameters of interest are the
jp  cj ,,1 . It is worth noting that, even if 

the maximum of the likelihood is reached on the boundary (i.e. at least one of the ijp is equal 

to zero), this does not mean that the corresponding
jp vanishes since this is only the case if  

ijp = 0 for all i  = 1, …, l. 

 

For the Bayesian model, we first take “neutral” prior parameters β1 = β2 = 1. We obtain 

estimates with mean 0.64, standard deviation 0.12, and mean squared error 0.05. The 

corresponding histogram is given in Figure 69 (centre). 

It can be seen that the Bayesian method is more satisfactory, even when the situation is highly 

unfavourable for it, with a probability to be estimated relatively close to unity and a prior 

distribution that allocates a mean of 0.5. 

If it is known in advance that the probability to be estimated is “fairly high”, this may be 

allowed for in the value of β1; to check the impact we repeat the estimation with β1 = 1.5 and 

β2 = 0.5. We obtain a mean estimate of 0.78, standard deviation 0.11 and mean squared error 

0.01. The estimates are consequently much better, and this is also illustrated in Figure 69 

(right). In general terms, therefore, if one has some idea of the age distribution of the 

observed population , it should be introduced into the model without hesitation. However, in 

practice, it must be borne in mind that the choice of the prior distribution must be justified. 
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Figure 13.1. Simulations – Example 1: histograms of estimates of the probability of belonging 

to the first age group obtained in 1,000 iterations. Left: “corrected” regression; centre: 

Bayesian method with β1 = β2 = 1; right: Bayesian method with β1 = 1.5 and β2 = 0.5 

 

 

Example 2 

This example corresponds very closely to the second theoretical example (3 stages and 2 

ages) in the previous chapter. The conditional probabilities of the three stages are (0.6250  

0.3125  0.0625) for age class 1 and (0.125  0.375  0.500) for age class 2; the marginal 

probabilities for the three stages are (0.500; 0.328; 0.172) and the marginal probabilities for 

the ages are 0.755 and 0.245. These last two probabilities are to be estimated from 

multinomial samples of stages of size t (chosen as 20). The estimated results are given for the 

first probability (here p), whose true value is 0.755. 

Since in this case l and c are different, the IALK method and the corrected regression do not 

necessarily give the same results, so  it is instructive to compare them. In this comparison, we 

also introduce the Maximum Likelihood 2 method (Box 10) and our Bayesian method with β1 

= β2 = 1. The histograms of the results are shown in Figure 70 and the key features in Table 

58. 
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Figure 13.2. Simulations – Example 2: histograms of estimates obtained by four methods 

(with β1 = β2 = 1 for the Bayesian method) 

 

 

Table 13.1 Simulations – Example 2 – 5,000 iterations. Characteristics of the estimates of p 

obtained by four different methods 

 

 Mean Standard 

deviation 

MSE 

Bayesian method 0.672 0.134 0.025 

Corrected regression 0.724 0.201 0.041 

Maximum Likelihood 1 0.727 0.197 0.039 

Maximum Likelihood 2 0.737 0.205 0.042 

 

As we said above, we use the term “Maximum Likelihood 1” for what is more generally 

known as the IALK method. This is because the name IALK confuses the concept with a 

numerical solution technique which is incomplete in any case. The I in IALK basically refers 

to an “iterative” process that only gives a clear result if the maximum likelihood lies within 

the set of possible solutions and, in that case, corresponds to the zero point on the likelihood 

gradient; we prefer to take the principle of the maximum likelihood method to its logical 

conclusion and also consider a maximum at the  boundary. Although the IALK iterative 

process probably provides the maximum, this has not, to our knowledge, been rigorously 

proven, so we look for the maximum likelihood in all cases by using the constrOptim 

procedure from the R package (R Development Core Team, 2008). The same procedure was 

used to find the maximum likelihood in the more general model underlying Maximum 

Likelihood 2. 
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Table 58 shows that the mean squared errors are similar for the corrected regression and the 

two maximum likelihood methods, while that of the Bayesian method is significantly lower, 

although the prior distribution uses no indication as to the true value of p. This in fact 

explains why this method gives the largest bias, fortunately corrected by a much lower 

variance. 

Maximum Likelihood 1 gives slightly better results than corrected regression, which is to be 

expected, since it accounts better for the nature of the sampling errors. However, it may at 

first glance seem surprising that Maximum Likelihood 2 is not better than ML1 since, here 

again, it accounts better for the nature of the errors; the reason is probably that the number of 

parameters to be estimated is less parsimonious, which does reduce the bias but increases the 

variance more, and thus increases the mean squared error. Note finally that the individual 

differences between the estimates of the last three methods are quite small, rarely more than 

0.1; in this particular example, regression and Maximum Likelihood 1 relatively often provide 

estimates of p “at the boundary”, with unity in more than 10% of cases and even a certain 

number of zero values (approximately 0.2%). Maximum Likelihood 2 has the advantage of 

leading less often to these results (in our simulations we obtained no zero estimates and only 

1.6% at unity).  

Figure 13.3. Simulations – Example 2. Histograms of estimates obtained for p by the 

Bayesian method with β1 = β2 = 1 (left) and β1 = β2 = 0.5 (right). 

 

Up to now we have considered the Bayesian method with β1 = β2 = 1 and have seen that it 

performs better than methods based on other principles. However, we still need to examine 

the influence of the parameters of the prior distribution. To avoid giving undue advantage to 

the method we are comparing, we have taken various values for these prior parameters, 

staying within “neutral” prior means (0.50  0.50) but varying the confidence levels, with 

successively 1, 0.75 and 0.50 as common values for β1 and β2. A higher value for βj (1.2) was 

also envisaged. 

The characteristics of the distribution of estimates obtained for p are given in Table 13.2. 
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Table 13.2. Simulations – Example 2. Characteristics of p estimates by the Bayesian method 

for prior values of β1 and β2. 

 

 Mean Standard 

deviation 

MSE 

β1 = β2 = 1.2 0.660 0.123 0.024 

β1 = β2 = 1 0.672 0.129 0.024 

β1 = β2 = 0.75 0.688 0.149 0.027 

β1 = β2 = 0.50 0.707 0.163 0.029 

 

Figure 13.3 also compares the histograms obtained with β1 = β2 = 1 (left) and β1 = β2 = 0.5 

(right). 

In both the numerical values in Table 13.2 and the histograms in Figure 13.3, it can be seen 

that, just as with the previous example, reducing the βj slightly reduces the bias (which is due 

to a mean choice of prior probability lower than the true value), but at the cost of a noticeable 

increase in variance; in all, this ultimately gives a slight deterioration in mean squared error 

(MSE). Increasing the βj above unity increases the bias and gives an equivalent mean squared 

error. There appear to be no strong arguments for any particular choice of βj, but the simple 

option β1 = β2 = 1 can no doubt be recommended with no great risk. 

Example 3  

Now we apply simulation to an example that comes closer to the problems encountered in 

paleodemographic practice. We began with the 7 × 7 example of the Maubuisson nuns with 

conditional reference probabilities deduced from the frequencies given in Table 56 of the 

previous chapter, and row (stage) probabilities of 

(0.180  0.068  0.115  0.159  0.119  0.188  0.171). 

These probabilities comply with probabilities of dying in each age class of  

(0.012  0.025  0.087  0.170  0.289  0.210  0.207) 

as calculated from an exhaustive evaluation of deaths in the period 1670-1789 recorded in the 

registers available. 

The simulation results are therefore to be compared with the second set. The simulation 

involves R = 1,000 iterations, the multinomial samples comprise 37 individuals for the site 

data and are the same size as the reference data samples for the latter. 

We first compare the estimates obtained by the Bayesian method (posterior means) with β = 

(1, 1, 1, 1, 1, 1, 1), by regression (with a positivity constraint), and by Maximum Likelihood 1 

and 2. Table 13.3 shows the mean of estimates for each age class and each method, and, for 

each method, the total over seven age classes of mean squared errors (total MSE) and this 

same total weighted by the true values of the probabilities (relative MSE). 
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Table 13.3. Simulations – Example 3. Means of probability estimates for each age class 

obtained by four methods, and total and relative MSEs. 

 

Method Age class Total 

MSE 

Relative 

MSE 
20-

29 

30-

39 

40-49 50-59 60-

69 

70-

79 

80+ 

Bayes, 

uniform prior  

0.078 0.098 0.102 0.143 0.194 0.182 0.203 0.033 0.751 

Regression 0.001 0.069 0.061 0. 232 0.032 0.402 0. 203 0.233 1.526 

Max. L. 1 0.035 0.056 0.063 0.137 0.253 0.232 0.222 0.253 2.204 

Max. L. 2 0.174 0.071 0. 155 0. 257 0.168 0.125 0. 051 0.170 3.409 

True values 0.012 0.025 0.087 0.170 0.289 0.210 0.207   

 

 

To round out the raw numerical data above, Figure 13.4 gives the histograms of the 

frequencies of estimates obtained by the four methods for the probability of a single age-class, 

class 4 (“true” value 0.17). 

It can be seen that the Bayesian method clearly outranks the other three in terms of mean 

squared error (whether total or relative). For the other three methods, theory predicts that 

where l = c, regression with positivity constraint and Maximum Likelihood 1 should provide 

equivalent results, at least when the estimates are not at the boundary of admissible values. 

And this is indeed observed with other examples not described here. In this case, however, the 

two methods provide fairly dissimilar results; most likely because the results are all at the 

boundary (one estimated probability is zero). It is also clear that the optimisation of the 

functions concerned is highly unstable, which is a further argument against these methods. 

With respect to zero estimates, Figure 72 shows that there are a fair number of them with 

regression and Maximum Likelihood 1, even for Class 4, where the value to be estimated 

(0.17) is not particularly low. 
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Figure 13.4. Simulations – Example 3. Histograms of estimates obtained from 1,000 iterations 

by four methods for probability p4 (with uniform prior for the Bayesian method). 

 

 

 

Although the Bayesian method is clearly superior to the others, it presents notable biases, 

particularly in estimating the low probabilities of classes 1 and 2.  The method could be 

improved in two ways. One is to adjust the “weighting” of the prior distribution by modifying 

the variance while keeping the same means (equal for each class). It is clear, however, that the 

observed biases are produced by a prior distribution highly unfavourable in its means since it 

allocates the same probability of death to each age class. It would be more realistic to allocate 

to each class a prior mean equivalent to standard mortality rates, and the data collected at a 

given site would serve to modify the standard for that site. 

To test this first attempted improvement, we adjust the variances of the prior distribution 

without changing the means; the βj remains the same for all j but takes successive values 1.25 

, 1,  0.75 and 0.50, so that the variances gradually increase. The means of the estimates 

obtained for these four prior distributions with 1,000 iterations are given in Table 61, with 

total and relative mean squared errors in the last two columns as before. 

It can be seen that βj = 1 is a reasonable compromise. Low probabilities tend to be 

overestimated and high probabilities underestimated; the overestimation of the low 

probabilities is less marked when the βj are smaller, giving a lower relative mean squared 

error, but what is gained in one place is lost in another, so the total mean squared error is 

higher. 
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Table 13.4. Simulations – Example 3. Mean of the estimates by the posterior mean from 

identical βj varying from 0.50 to 1.25, and total and relative mean squared errors. 

 

Value of βj Age class Total 

MSE 

Relative 

MSE 
20-29 30-39 40-49 50-59 60-69 70-79 80+ 

1.25 for all j 0.082 0.102 0.105 0.143 0.190 0.177 0.200 0.030 0.811 

1 for all j 0.078 0.098 0.102 0.143 0.194 0.182 0.203 0.033 0.751 

0.75 for all j 0.0678 0.087 0.093 0.141 0.205 0.190 0.216 0.036 0.672 

0.5 for all j 0.059 0.079 0.085 0.141 0.215 0.200 0.221 0.042 0.598 

True 

probabilities  

0.012 0.025 0.087 0.170 0.289 0.210 0.207   

 

We now attempt to use standard mortality rates instead of equal prior means. In view of the 

nature of this example, we take the pre-industrial standard mortality for women, which, with 

considerable rounding, gives the following proportions for the seven classes: 

0.10   0.11   0.12   0.15   0.21   0.21   0.10 

The βj are calculated in proportion to these values, with a sum β. varying around 7 as 

suggested by the previous study. 

The results obtained for β., successively equal to 5, 7 and 10, are given in Table 62, with 

comparative figures for a uniform prior distribution. 

The first point to note is that the new prior results in a substantial improvement, in both 

absolute and relative terms, particularly in relative errors because of the major bias in 

estimating low probabilities with a uniform prior distribution. Comparison of the three prior 

distributions deduced from the standard shows relatively similar behaviour, with an advantage 

for a smaller β. if focusing on relative errors, for a larger β. if focusing on absolute ones. The 

choice of β.  = 7 (number of columns) appears to be a good compromise and our conclusion is 

to recommend it. 
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Table 13.5. Simulations – Example 3. Comparison of mean estimates obtained from a 

uniform prior distribution (row 1) and three prior distributions deduced from the female pre-

industrial standard, with total and relative mean squared errors. 

 

Value of βj Age class Total 

MSE 

Relative 

MSE 

20-29 30-39 40-49 50-59 60-69 70-79 80+ 

1 for all j 0.078 0.098 0. 102 0.143 0.194 0.182 0.203 0.033 0.751 

Standard  

 β.  = 5 

0.054 0.074 0.084 0.149   0.260 0.239 0.140 0.028 0.428 

Standard  

 β.  = 7 

0.059 0.079 0.089 0.148 0.254 0.235 0.135 0.024 0.451 

Standard  

 β.  =10 

0.065 0.084 0.094 0.148  0.246 0.233 0.130 0.022 0.498 

True 

probabilities  

0.012 0.025 0.087 0.170 0.289 0.210 0.207   

 

Actually, for the Maubuisson nuns whose ages at death are simulated in this example, the fact 

that the site is a convent cemetery provides important supplementary information because the 

young nuns were probably in better health on average than the general population and not 

exposed to certain major mortality risks, particularly death in childbirth. The method can 

incorporate this prior information by modifying the βj parameters. For example, we may 

consider that mortality in the 20-29 age class is probably more than halved and that mortality 

in the following age class is also halved. This leads us to consider a new βj vector (



7

6.21
) 

(0.30  0.40  0.84  1.05  1.47  1.47  0.70) (the coefficient 



7

6.21
 is used to bring total β.  to 7 as 

recommended above). This produces the following mean estimates: 

0.033   0.051  0.107  0.164  0.262  0.245  0.138 

with a total mean squared error of 0.019 and a relative mean squared error of 0.183. 

The improvement is significant, most clearly for the low probabilities in Classes 1 and 2, 

which are most affected by the change in prior distribution, and consequently for the relative 

mean squared error. 

Finally, it is reasonable in this case to use the Bocquet-Appel and Bacro method (2008) with 

the ProbAtri20-90 set of 756 base vectors. Table 13.6 gives the total and relative mean 

squared errors for the results obtained with that method and the Bayesian method using the βj 

above (MPI means “modified” pre-industrial); for a comprehensive comparison we also give 

the results from Table 3. 8 for the βj corresponding to the pre-industrial (PI) standard. 
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Comparing our method and that of Bocquet-Appel and Bacro on this example, it can be seen 

that their performances in this case are similar, with a slight advantage to the Bayesian 

method if an informed choice of prior distribution is possible. 

 

Table 13.6. Simulations – Example 3. Comparison of the Bayesian method using two prior 

distributions (PI: female pre-industrial standard; MPI: modified pre-industrial standard, see 

text) with the Bocquet-Appel and Bacro method. 

 

Method Total MSE Relative MSE  

Bayes (PI) 0.024 0.451 

Bayes (MPI) 0.019 0.183 

Bocquet-Appel 0.021 0.304 

 

Example 4 

Here we take an example where the bone stages are subdivided into 5 categories, with the 

same 7 age classes as before. Traditional frequentist methods cannot be used because there 

are more columns than rows, but it is possible to use the Bocquet-Appel and Bacro method 

with the ProbAtri20-90 set of 756 vectors. This example serves to continue the comparison 

between that method and ours. 

The reference data table is the 5 × 7 table for both sexes as follows: 

138  68.8  58.2  33.2  13.4   7.0    5.0 

 42  58.6  54.6  48.8  24.2  26.4  14.6 

 18  25.4  35.4  38.2  31.0  33.8  24.0 

 12 17.0  20.4  35.6  49.2  42.0  36.6 

  4  16.4  12.4  24.6  42.2  32.4  42.8 

We took in turn three different probability vectors for the age classes 

(0.166   0.115   0.150   0.178   0.173   0.134   0.084) 

(0.10   0.10   0.15   0.15   0.20   0.20   0.10 ) 

(0.35   0.09   0.09   0.10   0.18   0.11   0.08 )  

 

They were chosen to represent realistic situations, assumed to be favourable to one method or 

the other. The first is the vector mean of the ProbAtri20-90 set of 756 vectors; the second a 

vector close to the pre-industrial standard; and the third the estimate made for the Frénouville 

site. We consider that no particular prior information is available: the Bayesian method is 

therefore used with a prior distribution complying with the pre-industrial standard and β. = 7.  
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Table 13.7 gives the squared differences observed from a simulation of 1,000 repetitions. It 

can be seen that the two methods perform more or less equally for the last case, while ours is 

clearly better for the other two (including the first case where intuition might have suggested 

otherwise). 

 

Table 13.7. Simulations – Example 4. Comparison of the Bayesian method (with pre-

industrial standard prior) and the Bocquet-Appel and Bacro method. 

 

 Case 1 Case 2 Case 3 

 Total MSE  Relative 

MSE 

Total MSE  Relative 

MSE 

Total MSE  Relative 

MSE 

Bayes (PI) 0.001 0.006 0.004 0.028 0.035 0.231 

Bocquet-

Appel  

0.020 0.155 0.022 0.182 0.034 0.248 

 

Conclusion to the simulated examples 

The examples provide initial data for a discussion of the practical aspects of choosing the 

prior distribution. They also show that our method is clearly preferable to any method that 

does not address the specific features of the problem posed. Compared with the Bocquet-

Appel and Bacro method, which makes wide use of these features, our method appears on the 

whole to be perfectly competitive, and much simpler to apply: the choice of a prior 

distribution is clearly easier and more flexible than constructing a set of base vectors. 

However, this comparison merits further examination (on this point, see Caussinus and 

Courgeau, 2010). 

Note that the comparisons above concern the effectiveness of the method in producing point 

estimates. In the section below, we demonstrate a few more of its advantages. 

13.4. Examples of archaeological application 

We now apply our Bayesian method to the two archaeological examples addressed differently 

in the previous chapter. The choice of the prior distribution will use the principles described 

in Section 13.3. And a further question will be addressed: how to weight the reference data. 

This was not relevant in the above simulations because the invariance model was assumed to 

be valid by definition. 

Example 1: Loisy-en-Brie population 

The data are those considered in the previous chapter, for which regression was used (or, 

equivalent in this case, IALK). There are six age classes of equal duration and six stages. If 

we have no precise prior information, we can first apply the Bayesian method with β = (1, 1 ,1 

,1 ,1 ,1). Table 13.8 gives the estimated proportions for each class obtained for two values of 

coefficient r (weighting of reference data): 1 and 0.75. The standard deviations of the 

posterior distributions are also given. 
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Table 13.8 Loisy-en-Brie example 

Estimated parameters 2312 p
,..., 8312 p

 with β1 = β2 = … = β6 = 1 

 Age class 
23-34 35-46 47-58 59-70 71-82 83-94 

 r = 1 Expected posterior 

probability   
0.148  0.252 0.245 0.174 0.114 0.067 

Standard deviation 0.099 0.162 0.171 0.122 0.094 0.059 

 r = 0.75 Expected posterior 

probability 

0.153 0.247 0.238 0.175 0.116 0.071 

Standard deviation 0.101 0.159 0.165 0.122 0.097 0.062 

. 

The differences in expected posterior probabilities according to r are negligible if one takes 

account of the standard deviations (note that the standard deviations themselves differ little). 

There seems no reason, therefore, to weight the reference data and we continue the study with 

r = 1. 

From the posterior means and standard deviations we can establish the Beta distributions 

approximating the posterior distribution of each of the 6 probabilities of belonging to each 

age class (see Sect. 13.2.1). We first examine how satisfactory this approximation was by also 

calculating the exact distribution functions by the method given in 2.1. Figure 13.5 compares 

the exact and approximate distribution functions. It can be seen that the approximation is 

extremely close, as is also suggested by the relative difference between the 3rd-order (to the 

power 1/3) and 4th-order (to the power ¼) moments: they are all less than 1.8% for the 3rd 

order and less than 3.8% for the 4th order. In practice the Beta distribution approximation 

appears mainly to provide an opportune sort of smoothing. 
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Figure 13.5. Loisy-en-Brie example (6 age classes). Exact (solid line) and Beta approximate 

(dotted line) posterior distribution functions. 

 

 

 

In the light of these results, we consider the Beta approximations of the posterior 

distributions. The corresponding densities are shown in Figure 13.6, compared with the prior 

densities (all Beta (1; 5) densities, mean 0.167 and standard deviation 0.141). 
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Figure 13.6. Loisy-en-Brie example. Posterior probability density (solid line) for each age 

class, compared with prior density (dashed line), in the case of uniform prior distribution. 

 

 

 

We shall not enter here into a detailed discussion of these initial results because the prior 

distribution considered here does not integrate the fact that we are attempting to estimate a 

mortality distribution. Since we have no other specific a priori argument, it is reasonable to fit 

the prior distribution on the pre-industrial standard. We did this by assuming that parameters 

βj are proportional to that standard and sum to 6 (see Section 13.3) as follows: 

β = (0.77  0.90  1.16  1.53  1.25   0.39)  

The posterior means and standard deviations are now the ones shown in Table 13.9. 

 

Table 13.9. Loisy-en-Brie example.  

Estimated parameters 2312 p
,..., 8312 p

 with prior deduced from pre-industrial standard. 

Age class 23-34 35-46 47-58 59-70 71-82 83-94 

Expected posterior 

probability  
0.139 0.233 0.250 0.220 0.132 0.026 

Standard deviation 0.100 0.157 0.165 0.123 0.096 0.038 

 

As before, the Beta approximation of the posterior distributions is excellent. We used it 

therefore for the densities shown in Figure 13.7. 
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Figure13.7. Loisy-en-Brie example. Posterior probability density (solid line) for each age 

class, compared with prior density (dashed line), in the case of a prior complying with the pre-

industrial standard. 

 

 

Comparing the numerical values in Tables 13.8 and 13.9 as well as the posterior densities in 

Figures 13.6 and 13.7, most of the estimated probabilities are quite stable, demonstrating the 

limited influence of this prior on the result of the estimation. The greatest difference is 

observed for the 83-94 age class, which is to be expected since this class will clearly have a 

low probability, a feature allowed for by the second prior distribution but not the uniform one. 

With the uniform prior, the posterior deviates quite significantly from it, showing that the data 

impose a serious downward revision; the same is true, though to a lesser extent, for the 

second prior distribution (taking only the mean, it falls from 0.39/6 = 0.065 to 0.026), 

confirming that the corresponding probability is not only low but in all likelihood lower than 

the pre-industrial standard. The next greatest difference between the two estimates can be 

seen in the 59-70 age class, where the posterior mean rises with the pre-industrial standard, as 

does the prior mean; the posterior standard deviation also increases (in fact the posterior 

density is quite clearly more “open”). But these differences are limited, if we consider the 

wide dispersion of the posterior distributions, due to the small sample size and the structural 

instability of the problem considered. 

For a clearer idea of the accuracy of the estimates, credibility intervals can be calculated. As 

we have already pointed out, because of the considerable asymmetry of the distributions 

involved, it is highly inadvisable to calculate symmetric confidence intervals of the “mean 

plus or minus so many standard deviations” type. It is better to stay with the Bayesian 

paradigm and give quantiles of the posterior distribution. Table 13.10 gives quantiles 0.05 and 

0.95, which provide a 90% credibility interval and quantiles 0.25 and 0.75 (quartiles), which 

provide a 50% credibility interval. 
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Table13.10. Loisy-en-Brie example. Estimates by posterior mean and quantiles for 90% and 

50% credibility intervals 

Estimated probabilities  
2312 p  3512 p  4712 p  5912 p  7112 p  8312 p  

Posterior mean 0.139 0.233 0.250 0.220 0.132 0.026 

Quantile 0.05 0.019 0.031 0.035 0.053 0.018 0.000 

Quantile 0.95 0.334 0.536 0.566 0.452 0.319 0.104 

Quantile 0.25 0.062 0.108 0.119 0.126 0.059 0.002 

Quantile 0.75 0.193 0.329 0.353 0.296 0.187 0.035 

 

Now we shall compare these results with those obtained by the various methods presented in 

the previous chapter. Rather than work with deaths observed for various age groups, it is 

useful to observe a quantity more generally used in demography: the probabilities of death per 

age group, which can be estimated from mortality data on the assumption of a stationary 

population. We examine the various estimates made for the Loisy-en-Brie population. Figure 

13.8 gives these various probabilities. 

 

Figure13.8. Probabilities of death for Loisy-en-Brie estimated by the Bayesian method with 

pre-industrial standard prior (Bayesian PI), uniform prior (Bayesian U), regression, and the 

method proposed by Bocquet-Appel and Bacro in 2008 (Bocquet), compared with the pre-

industrial standard (PI). 

 

 

The figure clearly shows that the curve of regression method estimates, which, it will be 

recalled, gives the same results as the IALK method, is highly erratic. This confirms what is 

seen in the simulations, where the regression method leads to widely dispersed results (see 

Section 3). On the other hand, the Bayesian methods, with either a uniform or a pre-industrial 

standard prior, exhibit a regular increase in the probabilities of death with age. The difference 

in prior distribution only affects the last two age groups, and then only slightly. We enter the 

probabilities of death for this standard, clearly showing its effect on the Bayesian estimates 
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for the oldest age group. Despite this slight effect, the Bayesian estimated distributions differ 

significantly from the standard and are similar to each other, showing the robustness of this 

method, whatever the prior distribution chosen. We explained above why we prefer the 

second estimate (PI). We also entered the probabilities of death obtained by the method 

proposed in Bocquet-Appel and Bacro (2008: see presentation and results in the previous 

chapter): their distribution is fairly close to the Bayesian solution with the pre-industrial 

standard. But it is higher for the youngest age group and lower for the others. On this precise 

point, the fact that our estimates are stable with respect to the prior distribution and that the 

dispersion of the posterior distribution is relatively low suggests that they can be ascribed to a 

high confidence level. As for the overall results, it can be seen that the Bocquet-Appel and 

Bacro method with the choice of a parametric space comprising a distribution of age 

distributions close to the Bayesian solution, leads to results similar to the Bayesian method, 

but at the cost of a significantly more cumbersome technique.  

Example 2: the Maubuisson nuns (17th-18th centuries) 

We now turn again to the Maubuisson example, which gave unacceptable results with the 

ordinary least squares method, such as negative values and values above unity. Even if the 

least squares can be forced to meet the necessary constraints, the estimates obtained are on the 

boundary of the parametric space (zero values) and clearly unrealistic. We adopt now the 

same division into 7 stages and 7 age classes as before.
4
 The numbers observed for the 

various stages in a sample of 37 skulls are (6 2 4 5 3 9 8). 

We have a large amount of prior information about this site, particularly useful since the 

sample is fairly small (37). These are nuns, and consequently all women, all theoretically 

older than 20. We can therefore opt for specific reference data, namely those already used in 

the previous chapter and Section 13.3 of this chapter. If we stick to this information, using the 

experience from Section 13.3, Example 3, we shall take for the 7 parameters to be estimated a 

Dirichlet prior probability distribution with βj parameters proportional to the values of the 

pre-industrial standard (women) and summing to 7, namely (0.70  0.77  0.84  1.05  1.47  1.47  

0.70). We present here these initial estimates, more for comparative purposes than for a 

conclusion. The fact that these women were nuns gives us further information: on admission 

they were for many reasons in better health than the mean of the general population; they 

were then protected from various major mortality risks, particularly death in childbirth. These 

factors can be considered to reduce the mortality of the 20-29 age class by just over 50% and 

of the 30-39 class by just under 50%, thus replacing the parameters of the prior distribution by 

(0.30  0.40  0.84  1.05  1.47  1.47  0.70) or rather by the proportional values (0.337 0.449 

0.944 1.180 1.652 1.652 0.786) summing to 7, as recommended in Section 13.3. From this 

prior distribution we propose a second estimation: it appears prima facie to be the one that 

should be adopted in practice, and we shall see how far the results obtained confirm this. 

Finally, as mentioned in the previous chapter, there is a further major source of information in 

this case: the convent records give direct evidence of the actual ages at death; as a result the 

age class probabilities may be evaluated as follows: (0.012 0.025 0.087 0.170 0.289 0.210 

0.207). We have therefore an objective way of judging the effectiveness of the method, 

                                           
4
 A study of this site with 5 suture stages instead of 7 and five-year age classes (a total of 13) 

has been carried out and is given in Séguy et al. (2012). The results tally completely, showing 

in particular that the method described here works effectively with significantly more age 

classes than stages. 
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although some caution is necessary, because the evaluation is probably only approximate and 

the 37 skulls are only a small and possibly biased sample.
5
 

We begin with an analysis using a prior distribution that complies with the pre-industrial 

standard for women. We applied various “reduction coefficients” to the reference data; since 

the results were observed to be stable, we shall stick with coefficient 1. The posterior 

expected values and standard deviations are given in Table 13.11. 

Table13.11. Maubuisson example. Estimated parameters  2010 p
, to 80p

: posterior means 

and standard deviations for a “standard” prior distribution. 

 

 
2010 p

 3010 p
 4010 p

 5010 p
 6010 p

 7010 p
 80p

 

Posterior 

expected value  
0.048 0.067 0.071 0.135 0.301 0.219 0.159 

Posterior 

standard 

deviation 

0.050 0.068 0.069 0.114 0.166 0.142 0.135 

 

It is instructive to compare the posterior means with the prior means, in this case (0.10 0.11 

0.12 0.15 0.21 0.21 0.10). It can be seen that the data significantly revise downwards the 

probabilities for the “youngest” classes, and upwards only the two oldest ones; which is 

consistent with the discussion above. We leave this analysis as it stands and move on to the 

Bayesian analysis with a prior distribution with parameters (0.337 0.449 0.944 1.180 1.652 

1.652 0.786) corresponding to a modified pre-industrial standard as discussed above. The 

posterior means and standard deviations obtained are given in Table 13.12. We now go on to 

examine various other parameters of the posterior distribution relating to each age class. For 

example, we may calculate quantiles: a selection is given in Table 13.13. Figure 13.9 is a 

graphical representation of the 50% credibility intervals, comparing posterior means and 

medians with the values in the records. 

 

 

 

 

 

 

 

                                           
5
 Note, however, that with the reference probabilities we are using, the sample is fully 

compatible with the documented values. If we calculate theoretical frequencies for stages 

from these data and compare them with the observed values by chi-squared test, we obtain 

1.93 with 6 degrees of freedom. 
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Table13.12. Maubuisson example. Estimated parameters 2010 p
, to 80p

: posterior means and 

standard deviations for a “modified pre-industrial standard” prior distribution 

 
2010 p

 3010 p
 4010 p

 5010 p
 6010 p

 7010 p
 80p

 

Posterior 

expected value  
0.025 0.041 0.083 0.151 0.311 0.230 0.159 

Posterior 

standard 

deviation 

0.037 0.054 0.074 0.119 0.163 0.142 0.132 

. 

 

Table13.13. Maubuisson example. Posterior medians and quantiles for 90% and 50% 

credibility intervals 

Estimated 

probability  
2010 p

 3010 p
 4010 p

 5010 p
 6010 p

 7010 p
 80p

 

Median  0.010 0.020 0.065 0.125 0.300 0.208 0.130 

Quantile 0.05 0.002 0.002  0.006 0.015 0.069 0.042 0.008 

Quantile 0.95 0.106 0.156 0.232 0.387 0.604 0.501 0.417 

Quantile 0.25 0.003 0.005 0.028 0.061 0.186 0.121 0.053 

Quantile 0.75 0.034 0.058 0.121 0.216 0.427 0.319 0.239 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 

Figure13.9. Maubuisson example. Fifty-percent credibility intervals for 7 age classes (green 

lines), posterior means (black dashes) and medians (red circles) compared with values from 

the records (asterisks). 

 

 

 

The prior means in this case are 

(0.048    0.064    0.135    0.169     0.236      0.236       0.112) 

and the target values given in the records are 

(0.012 0.025 0.087 0.170 0.289 0.210 0.207). 

First, it is clear that with so small a sample it is not possible to obtain very precise estimates, 

as can be seen from the rather wide credibility intervals. But some relevant information may 

be inferred from the analysis of the data. It can be seen that this analysis leads to a further 

downward revision of probabilities for the first three classes and a further upward revision for 

the fifth and seventh. The most noticeable differences (particularly in relative terms) between 

posterior means and target values are to be seen for the first two probability figures, where the 

values taken from the records are much lower than would have been expected. In fact, with 

the highly asymmetric distributions corresponding to extremely low probabilities, the mean 

can be deceptive; if we examine class 1, for example, we can see that 50% of the posterior 

probability lies in the interval [0.003  0.034], whose mean 0.0185 is close to the target value, 

as is, indeed even more so, the posterior median 0.010; the same holds for class 2. It is 

therefore justifiable to suppose that for these two classes the posterior means overestimate the 

true values, an indication that turns out to be realistic. In more general terms, it can be seen 

that the 50% credibility intervals do indeed cover the target values, which are always close to 

the posterior mean and median, and the greatest discrepancy, albeit quite understandable 

given the sample size, is to be found in class 7. To sum up, we may say that the posterior 

means provide base information likely to be usefully supplemented by a range of 

considerations concerning various features of posterior distributions (medians, credibility 

intervals, etc.). 

Here our results can be compared with those obtained by Bocquet-Appel and Bacro’s Iterage 

algorithm, because the division into classes adopted corresponds to the ProbAtri20-90 file of 

“prior” vectors they provide. Their algorithm gives the following estimates: 
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0.025  0.036  0.073  0.133  0.209  0.268  0.255 

It can immediately be seen that the estimates for the first two classes are closer to the target 

values (probably because we did not wish to give too low a prior mean for these classes), but 

that the estimates for the other classes are on the whole better with our method. To have a 

closer idea, we calculated the distances between estimates and target values in two ways: sum 

of squared deviations and sum of squared deviations weighted by the target value. The figures 

are 

– for the Bayesian method: 0.003 and 0.040 

– for the Bocquet-Appel and Bacro method: 0.014 and 0.078 

demonstrating a significant advantage for our method. 

It must be said, however, that if we had merely used the Bayesian analysis without taking 

account of the information provided by the particular situation of the nuns (our first analysis), 

we would have obtained distances 0.007 and 0.199. The method would have retained its 

advantage in crude deviation but lost it in relative deviation because of too large an “error” in 

the low probabilities. 

We look now at the calculation of probabilities of death for the Maubuisson nun population. 

Figure 13.10 shows these probabilities calculated under various hypotheses. 

 

Figure13.10. Probabilities of death for the Maubuisson nuns as estimated by the Bayesian 

method with prior from the modified pre-industrial standard (MPI), the method proposed by 

Bocquet-Appel and Bacro (Bocquet) and the Maximum Likelihood 2 method (Max. L. 2), 

compared with the modified pre-industrial standard (MPI) and the values actually observed 

(Observed) for these nuns. 

 

 

This figure compares the ten-year  probabilities of death estimated by the Bayesian method 

described here with as prior the modified pre-industrial standard and the method proposed by 

Bocquet-Appel and Bacro (2008) with the 756 vectors proposed by these authors 

(combination of Gompertz-Makeham distributions and extreme values - see previous 

chapter). For the purposes of comparison, the graph also shows the observed probabilities of 

death distribution for the nuns as estimated for the period 1640-1889. The IALK method (see 

previous chapter) gave results outside the limits [0, 1] for the proportion of deaths by age 
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group. This method can, however, be used with the addition of a positivity constraint. Here, 

we used the Maximum Likelihood 2 method (see Box 13.2). 

It can be seen straightaway that this last method (Max. L. 2) provides rather unlikely 

probabilities of death close to zero except for the 50-60 and 60-70 age groups. Even if they 

are all positive, they are hardly acceptable. The Bocquet-Appel and Bacro method only gives 

probabilities of death close to the observed values for the first two age groups. They differ 

widely for the later groups, systematically underestimating the probabilities of dying. 

Conversely, the Bayesian method we propose gives quite accurate estimated probabilities for 

all ages, slightly overestimating for the first two age groups and underestimating for the last 

age group.  

5. Conclusion 

The previous chapter presented a detailed critical examination of the main approaches used by 

paleodemographers to estimate the age structure of a population for which they only have 

biological indicators measured from skeletons. Paleodemographers often call these methods 

Bayesian because they use Bayes’ theorem and introduce a priori considerations into their 

method of estimation, but the paradigm upon which they are based is frequentist in nature. 

This chapter has rather proposed a strictly Bayesian approach in the sense habitually used in 

statistics, as specified in the introduction, in order to solve this major and recurrent problem 

for palaeographers. This conclusion provides an overview of the main advantages of this 

approach compared with the previous ones. 

First, the previous approaches considered that the data taken from the observed groups 

(frequencies of data from reference population, frequencies of data from observed population) 

were entirely or partially fixed quantities. The probability vectors method and the IALK 

method took all these parameters as fixed in order to estimate the age structure of the 

observed population; the method proposed by Bocquet-Appel and Bacro (2008) considered 

the frequencies of data by stage taken from the observed population as fixed when 

establishing recommended confidence intervals. Since the numbers of skeletons, especially 

for the observed population, are often small, these hypotheses do not hold. The IALK method 

thus yields estimates that are incorrect or totally unrealistic (age-groups with zero probability) 

for the age structure of the observed population. The confidence intervals provided by 

Bocquet-Appel’s Iterage software, which we ran with the Lisbon reference data for various 

site data frequencies, appear to be erroneous and much too small, and therefore over-

optimistic: in some cases the interval is zero, some do not contain the estimated parameter 

value or that value is at one extremity of the interval. We shall see below a further possible 

reason for these inadequacies in the algorithm used.  

Our approach considers all observed frequencies (both site and reference data) to be random; 

the same is true for the model in Appendix B , but we have seen that this in itself is not 

necessarily an advance. We continue by considering the unknown parameters (reference 

conditional probabilities and age probabilities) to be random under the Bayesian paradigm. 

Estimates are thus obtained in the form of posterior distributions of probabilities of various 

age classes, from which can be deduced point estimates (such as posterior means) and 

“Bayesian confidence intervals”, more commonly known as “credibility intervals”, whereas 

methods that do not allow for the randomness of the data cannot provide confidence intervals 

since these are based, by definition, on the uncertainty caused by the randomness. 

Second, earlier approaches, except for that of Bocquet-Appel and Bacro, do not take into 

account the specific nature of the paleodemographic question, although the demographic 
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knowledge accumulated over many years and information about the living conditions of the 

populations concerned can provide information about their mortality that is potentially usable. 

Establishing networks of model life tables has made it possible to hypothesise a standard pre-

industrial mortality that can be used to select a prior age distribution for the observed 

population that is more satisfactory than the uniform distribution. Similarly, in work on the 

Maubuisson nuns, say, one can use the fact that these women, because of their monastic lives, 

were not exposed to the same mortality risk as the general French population: in particular 

they avoided the risk of death in childbirth. Bocquet-Appel and Bacro’s approach (2008) also 

uses prior information taken from paleodemographic research, but presented in a different 

manner. As we have said, the Iterage program introduces a restriction of the parametric space 

to make up for the small number of data. In some respects, their method is a regression, but 

instead of considering that the vector of the parameters to be estimated is in a space with as 

many dimensions as the number of age groups considered, with the sole restriction that its 

components sum to unity, it is confined within the convex envelope of vectors defined ex-ante 

by a mix of Gompertz-Makeham distributions and extreme values, for which the four 

parameters vary within restricted intervals. Although this mode of calculation is justifiable as 

it reduces the variability of the estimators, it may in return introduce a considerable bias. If 

the age distribution sought falls outside this restricted space, the estimate obtained may be at a 

considerable distance. This may result in some confidence intervals that never contain the true 

values, as pointed out above: this occurs if the intervals are confined within the same limits as 

the point estimates, as is the case with those provided by the Iterage algorithm. 

The Bayesian approach differs in a third way from the IALK and frequentist approaches in 

general (except for the method proposed by Bocquet-Appel and Bacro, 2008). Whereas many 

authors have stressed that when the number of age groups is greater than the number of stages 

considered, no valid estimate of the age structure of the observed population is possible with a 

frequentist method, use of a Bayesian method removes this obstacle. We have seen that such 

an estimate is always possible in Bayesian terms; using examples we have even shown that 

the quality of the estimate may be improved with a finer division into age classes (see Séguy, 

Caussinus, Courgeau and Buchet [2012]). 

A fourth feature sets the Bayesian approach apart. In the frequentist approach, it is usually 

considered sufficient to evaluate the mean and variance of the estimator of a parameter 

because, when the number of observations is large, its probability distribution often tends 

towards a normal distribution characterised by these two values. For the estimates in which 

we are interested (low probabilities and small samples), however, the distribution is generally 

highly asymmetric, casting doubt on this approach. The same asymmetry can be found in the 

posterior distributions of the Bayesian approach, but these distributions are easy to determine, 

making it possible to calculated reliable credibility intervals. 

A fifth difference, this time between the Bayesian approach and the Iterage algorithm, is its 

simplicity of operation. Selecting a prior distribution is much easier and more flexible that the 

construction of a mortality model whose parameters are supposed to represent the most varied 

conditions of mortality, by attrition as well as disaster. Furthermore, once the 

paleodemographic sample differs from the model conditions, both in number of age classes 

and in selected intervals, the model has to be reset and all the prior probability vectors 

recalculated, whereas, to our knowledge, Bocquet-Appel and Bacro do not provide anywhere 

their full parametric formulation. It is clear that some situations will always fall outside such a 

mortality model, whereas the Bayesian method can be used to address all possible cases, 

albeit with varied efficacy. 

In parallel to the “theoretical” considerations we have presented here, it is important to recall 

the results of our empirical studies. The simulations we have run can be used to measure the 
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quality of results obtained under the various methods proposed. Calculation of their mean 

squared errors provides a comparison between the estimates produced and the true values of 

the parameters, which in this case are known. The method we propose outperforms the other 

methods in almost all cases, often with substantial gains in accuracy. Only some of the results 

obtained with the Iterage algorithm manage to equal its performance, but in other cases 

Iterage introduces noticeable biases because it requires a restricted parametric space, whereas 

the age structure of the population under study falls outside that space. 

We trust that this chapter has clearly demonstrated all the advantages of using a fully 

Bayesian estimation of the age structure of historic populations for which there is no record of 

age at death and where the records are replaced by the measurement of biological indicators. 

We hope that many paleodemographers will use it, providing further insight into its 

application and encouraging any improvements that may be necessary, so that their 

experience will complement our own. 


