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3.3.27 Multistate transition models

Demographic multistate models deal with the transitions that members of a
population may experience during their lifetimes as they move from one state of
existence to another. These states may be demographic ones, such as family status or
occupational status, or geographic ones, such as region of residence or place of work, or
more general social groups like classes in school, electoral constituencies, and so on.

1 Increment-decrement tables

During the 1960s and the 1970s, demographic work on multi-state life tables
produced a generalization of classical mathematical techniques used in demography for
more than 300 years (see Life table). These new models can be viewed as
superimposing a set of two or more life statuses on the single dimension of the classical
life table, which only has a live-to-dead transition. For example, they can incorporate
several forms of decrement from an initial state, such as mortality by cause of death in
multiple-decrement tables. They can also chain together a series of multiple-decrement
tables without permitting re-entries into a state previously occupied, such as transitions
to rising educational levels in hierarchical tables. They finally lead to more general
nonhierarchical increment-decrement tables, which accommodate re-entrants into states
and differentiate interstate moves by both origin and destination (Land and Rogers,
1982), as in multiregional migration models.

These models describe the dynamics of populations where individuals in a given
state are assumed to be homogeneous: the probability to move from one state to another
is the same for all individuals in the same state. Population heterogeneity can be
accounted for to some extent by increasing the number of possible states. However, the
introduction of a growing number of sub-populations in order to ensure homogeneity in



each state quickly leads to group sizes so small as to rule out all analysis. What is more,
one can never be sure of having taken into account every factor of heterogeneity.

1.1 A Markov chain formulation

Mathematics allows us to develop tools to describe transitions between the
various observed states. One considers an individual life course as the result of a
stochastic process occurring in the given state space. The time dimension may represent
biological age or duration since some initial event, for example time since entry into the
labor force. This process is said to satisfy the Markov property if its present state is all
that counts in predicting its future: what other states were occupied previously by the
individual has no effect on the coming move. The future is independent of the past
except through the present. The process is not always stationary, as transition
probabilities may depend on time. This leads to time-continuous Markov chain models
with a finite state space.

Consider a single sample path, and let 7,(¢) =1 if it is in state i at time ¢, with
I;(t) = 0 otherwise. One defines the transition intensity from state i to state j at time ¢
as

P(L;(t+A0) =1 I, () =1)
At '

For increment-decrement tables only aggregate data on flows between states are
used; one does not use individual trajectories in the calculations. In some cases
transition intensities may be specified as given functions that are known except for the
value of parameters that must be estimated from the observed data. In other cases one
uses approximations such as piecewise constant intensities provided time intervals are
available over which the intensities can be taken as constant. Once these transition
intensities are estimated, one may find the corresponding tramsition probabilities for
every suitable time period, for example, the probability that an individual in state i at
time £, will be in state j at time ¢,. It is also useful to estimate expected sojourn times in

each state and many other summaries of behavior. Finally these analyses may be
completed using regression models with aggregate characteristics for each state. (See
Event -history analysis in continuous time.)

The availability of aggregate or contextual data may invite the analyst to
examine the effect that characteristics of the groups studied have on group behavior.
The aggregate or contextual characteristics are interpreted as a set of constraints that
each sub-population imposes on its members (or corresponding opportunities) and
which influences their behavior. For example such an analysis may perhaps reveal a
positive association between the rate of unemployment in a region and its out-migration
rate. But there is a real danger of inferring from such an observation that individuals of
this population who are unemployed have a higher probability of out-migrating from a
region, whereas all that is identified by the model is that a high rate of unemployment is
accompanied by a high rate of out-migration, whether the individuals involved are
economically active, unemployed or inactive. This type of mistaken inference from
group-level associations to individual behavior is known as the ecological fallacy.
Committing this fallacy is avoided in event-history analysis, which we turn to later.

Hy (1) = lim ()



1.2 More complex models

The Markov chain assumption is restrictive and constitutes a rough
approximation for many demographic processes. For example, in migration analysis one
needs to account for duration dependence in the propensity to move. There are also
preferred patterns of moves between regions; for instance return moves back to a region
of origin are preferred to moves to other regions. Such features can be taken into
account using more complex models.

A first way to analyze non-Markovian processes is to expand the state space so
that the process in the new space is Markovian. Such an extension however again leads
to an increase of the amount of data necessary to estimate the large number of transition
intensities beyond what is possible with the usual data sets. A second possibility lies in
the use of a semi-Markov process. In such a model the probability of moving at a given
time can bear any arbitrary relation to the duration of stay (Ginsberg, 1971). Neverthe-
less, any extension leaves out some property of the studied process and even more
complex models are needed. For example in the case of migration, a semi-Markov
process is unable to take into account the higher probability of return moves unless one
introduces information about previously occupied states.

2 Multi-state event-history models

Increment-decrement tables are computed primarily from aggregate data. It will
normally be preferable to use individual-level data instead. This approach allows us to
examine how events that occur to an individual can influence his or her future life
course and how personal characteristics can give individuals behavior patterns that are
different from those of other individuals. Event history models (see Event history

analysis in continuous time) have been developed to deal with such information, mainly
during the 1980s.

2.1 Interaction between events

Again a mathematical formulation helps us analyze the issues involved
(Andersen et al., 1993). Let P,(¢) be the number of individuals observed in state i just

before time # and let M () be the number of observed transitions from state i to state j
during the time interval [0, f]. Then the vector M ={Mij, i# j} is a multivariate

counting process where M, has intensity process u,(1)F(f). Here u,(¢) is the
corresponding transition intensity.

With these tools it is possible to follow each individual and to study interactions
between various processes. Consider the links between family formation and urban
migration in France, for example. In this country, the metropolitan areas are centered on
Paris, Lyons and Marseilles, and using data for the years 1925 to 1950 Courgeau (1989)
followed women who lived in these areas or outside them on their 14th birthday. For
these women, childbearing intensities for birth orders higher than 1 turned out to depend
strongly on whether they had migrated or not. For women from outside the metropolitan
areas, migration to such an area reduced their fertility by one third. Conversely
migration to a non-metropolitan area brought about a sharp rise in fertility for women
from the cities. After migration, cumulative childbearing intensities were 1.4 to 2 times
higher than for those who remained in the metropolitan area where they started out.
Migration to a metropolitan area attracted women whose fertility before migration
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already was similar to that prevailing in the urban area, and they displayed selective
behavior. Migration to a less urbanized area attracted women whose fertility before
migration was similar to that of other women in the urban area, and the women showed
adaptive behavior.

Conversely, the birth of successive children also influenced women’s mobility;
there is reciprocal dependence. The intensity of moving to a metropolitan area was
reduced after each successive birth, but that of moving in the opposite direction was
increased slightly by these births.

This analysis illustrates the complex dependencies that can be observed between
various dimensions of behavior, in this case childbearing and migration. We can speak
of local dependence when there is a one-sided influence of one process on the other
without reciprocity (Schweder, 1970), and of fotal independence if at any time each
event occurs independently of the other, though this rarely occurs in practice. For even
more complex dependencies, see Courgeau and Leliévre (1992).

It is possible to enlarge the ambit of the analysis to cover situations with even
more states. For example one can consider studying fertility occurring in various types
of partnership (marriage or cohabitation), or interactions between fertility and changes
of residence.

2.2 Population heterogeneity

Suppose that each individual carries with him or her a collection of possibly
time dependent characteristics which may change at distinct points in time due to
outside influences and also under the influence of the individual’s own previous life
history. The effect of these characteristics on the events of interest is investigated via a
time-dependent regression model, which may be a generalization of the Cox model
(1972) and may allow us to model the hazard or intensity using fixed and time-
dependent covariates.

Consider an individual £ with a vector of possibly time-varying characteristics
Z*(t) at time t. We write his hazard rate (or intensity) for a transition from state i to
state j as

1y (1) = p(t)exp{ B,2* (1)}, )

where the baseline hazard (intensity) ,u,;’. (1) is the same for all individuals and each f;

is a vector of parameters that measure the impact of the covariates. Individual-level
covariates may be binary (being married or not), polytomous [being (i) economically
active and employed, (ii) unemployed, or (iii) economically inactive], a feature that can
be treated as continuous (such as income), or even more diverse. An analysis based on
such a model can reveal whether individuals who are unemployed have a higher
probability of migrating out of a region than employed individuals, for instance, a result
which cannot be shown with aggregate data.

Courgeau (1989) used such a model to reconsider the interaction between the
birth of the third child and mobility, taking into account individual characteristics. Some
of these characteristics turned out to be affected by the migration process in France.
Being the daughter of someone engaged in agriculture had an effect on such a birth
irrespective of whether the woman lived in a metropolitan area or not, for instance.
Before migration this would delay the birth, but after a move the effect disappeared.
Other aspects of behavior were not affected by this migration. For example, if a woman



had a large number of siblings, she would be more likely to have a third child
irrespective of whether she came from a rural or an urban background. Once these
different effects were taken into account, the migration to metropolitan areas continued
to induce a marked reduction in the chance of giving birth to a third child, whereas
migration to less urbanized areas always raised fertility.

However, as one can never be sure to have collected information on all aspects
that might explain a given behavior; unobserved heterogeneity may be an issue. When it
is independent of the characteristics observed, it reduces the absolute value of the

estimates of regression parameters /[, that represent the effect of observed

characteristics, but it does not change their sign (Bretagnole and Huber-Carol, 1985).
When the observed characteristics turn out to have a significant effect, one can then
conclude that this will not be modified by independent unobserved heterogeneity; but
when no significant effects are found, a real effect can be disguised by unobserved
heterogeneity.

There are various ways of accounting for unobserved heterogeneity, but a
common procedure is to posit a set of individual-level scalar random effects V,.;‘ that are

added in the exponent of the intensity function, as in
1y () = yyexp{ B,Z* )+ V}}.

These random variables are then supposed to represent selectivity and/or heterogeneity
in the population by picking up effects of covariates that are not included in the
intensity-regression analysis.

Even when these powerful tools are used, care is needed, given that one
frequently specifies behavior as influenced only by the characteristics of the individual.
The danger here is of committing the atomistic fallacy if no attention is paid to the
context in which human behavior occurs. In point of fact, this context often does have
an influence, in which case it is fallacious to consider individuals in isolation from the
constraints and opportunities imposed by the society and milieu in which they live.
Contextual variables may be aggregates of individual level characteristics (such as the
per cent married in the individual’s region of residence) or general contextual
characteristics (such as the number of hospital beds in the same region, or its political
color). More complex analytical procedures can also be employed (such as the average
income or the correlation between income and matrimonial status).

Formally, contextual variables appear in the formulas above simply as factors
Z*(t) whose values are common to all individuals £ who live in the same context.

3 Contextual and multilevel analysis

The need to introduce the influence of contextual characteristics has given rise to
the idea of working simultaneously on different levels of aggregation with the aim of
explaining a behavior which is treated as individual rather than aggregated as in
increment-decrement tables. This removes the risk of committing the ecological fallacy,
since a characteristic on the aggregate or contextual level is only used to measure an
influence that may be different from its equivalent at the individual level. It is
introduced not as a substitute but as a feature of the sub-population, a feature that
influences the behavior of an individual who belongs to it. And the atomistic fallacy is
also eliminated once the context in which the individual lives is correctly specified in
the analysis.



The main limitation of contextual analysis is that the behaviors of individuals in
the same context are treated as independent. Such an assumption is usually not true, as
the behavior of an individual in a group often depends on other individuals in the same
group. Think of members of a family or household, or citizens of a town. One may need
to take into consideration the observed social structure of a group and the interactions
that exist between its members as well as changes in such interactions over time
(Lelievre et al,, 1998). Ignoring within-group dependence may lead to estimated
variances of contextual effects that are biased downward, making confidence intervals
too narrow. To handle this problem one extends the contextual model, following a
development that took place during the late 1980s and in the 1990s. Here is a quick
sketch of the main principles of such an extension.

Suppose that individuals are organized into groups and that individual & in group
h has transition intensities of the form

w1 (1) = ) (yexp{ 8,2 )+ V.

Observed dependencies may be picked up through the specification of the Z”(-). To
model unobserved dependence between individuals, introduce a set of group-specific
random variables W;’ and replace the above formula by

' ()= )@y exp{ B,Z" 1)+ V" + W} ].

Modern software like aML (see Lillard and Panis 2000) can handle analyses of such
models. There is much interest currently in how one can identify sensible distributions

for the heterogeneity variables {V,”} and {#,'} (“mixing distributions™). (See Horowitz
1999))

Multilevel analysis can be extended to more than two levels. The simplest and
more widely used structure is hierarchical: each level is formed by grouping together of
all units of the previous level: pupils are grouped in classes, which in turn are in
schools, which are perhaps divided between the state and private sector, and so on. The
relationship between the levels can be more complicated: individuals can be grouped in
towns of ascending size order, but distinguished also between administrative, industrial
and tourist centers, for example. In this case there is a cross-classification that includes
towns being classified by size and by function, say. It is of course possible to have
relationships that combine hierarchical and cross-classifications. For example,
individuals may be classified by type of residential neighborhood and by type of place
of work (cross-classification), which are themselves placed in a hierarchical
classification of parishes and regions.

It is not necessary to study a single process alone, as when moves between
different states of one kind are considered independently of other changes occurring
simultaneously in other life domains. Dynamic multilevel event-history analysis can be
used to study several interrelated processes at the same time. For instance, the study of
fertility in the various regions of a country can be carried out in principle
simultaneously with a study of migration between the regions, and this may be useful
since some women change residence between the regions during their reproductive
period.

Improvements in multi-state analysis like what we have sketched here are the
subject of current research. One can expect much future development in the
epistemological bases, methods of measurement, and procedures of analysis of a
dynamic theory of human behavior along these lines.
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