Chapter 12
Migration

by Daniel Courgeau

Totally isolated human populations are very rare. In Chapter 16,
we shall study several cases of human populations which have remained
separated from other groups for some time (for example, the Kel Kum-
mer Tuareg, or the Bedik tribesmen of Senegal). Apart from a few such
extreme cases, however, most human and animal populations communi-
cate with other populations of the same species by migration. The
amount of migration that will take place, and the exact type of migration
that occurs, will depend on geographical, sociological and economic
factors.

Ifa population receives a number of migrants from other communities,
its genetic structure may become altered. This will happen if the frequen-
cies of the various alleles at a locus are different in the group of immigrants
from those in the host population. Thus migration is a cause of changes
in the genetic constitution of populations. In this chapter, we shall study
such genetic changes due to migration.

First of all, we shall assume that all other conditions for Hardy-
Weinberg equilibrium are satisfied, and we will consider the case of a
number of groups, each of infinite size, which exchange members by
migration. Such a model is clearly unrealistic; we shall therefore next
study finite populations and shall establish “stochastic models”, which
enable us to study the variance in allele frequencies between groups when
there is migration. Thirdly, we shall try to show which of the assumptions
used in these models of migration need to be altered in order to agree
more closely with reality; this will be done by considering some studies
of human migration.

1. Deterministic Models with Migration
Consider an infinitely large population divided into m groups, each

of “infinite” size. Suppose that in each generation migration between
groups occurs; the proportion of members of the k-th group who are
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migrants from the r-th group, in generation g, will be written as (2. We
are assuming that all migrations take place in the period between birth
and the start of the reproductive period; during the reproductive period
itself, we assume that each group is panmictic. The proportion of indi-
viduals in the r-th group who are native to that group will be written as
I'®); hence we have:

It will be useful to write the set of values of I¥) as a matrix:

L=,

; L, is a square stochastic matrix of order m; the first subscript k represents
the row number, and the second subscript r is the column number.

The matrix L, represents the exchanges of migrants between all the m
groups in the g-th generation. Clearly, L, will change in each generation,
since the numbers of migrants exchanged between particular populations
will vary; however, in order to simplify matters, we shall assume from
now onwards that the terms /,, remain constant during the period in
] question, so that the exchanges between groups can be characterised by
a single matrix L.

1.1. Changes in Genic Structure

; Consider a locus with n alleles 4,, ..., 4;, ..., A,. We shall write s
i for the genic structure of the k-th group in generation g, i.e.:

) —(n(2) (
S;cg _(pkgls "-’p§cgi)’ ’pkgn))

: where the p,; are the frequencies of the various alleles in the group.
The genic structures of the m groups are therefore represented by m
vectors, each with n elements. To simplify the notation, we shall write
Q, for the matrix of order m x n whose rows are the vectors s%, i.e.:

Q= (p®), with Z pE=1.

Assuming that the allele frequencies are the same in the migrants
from a group as in the whole of the group they came from, we obtain:

(8) — €—1)

1 pkg; _Zlkr r%

4 r

which can be expressed simply, in matrix notation, as:

Q,=LQ,_,.
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Going back to the initial generation, we therefore have:
Q,=[Q,. (1)

Thus, if the matrix I# tends towards a limit, as g — oo, the genic
structure will also tend towards a limit. In order to study this limit, it is
convenient to express the matrix [# as a function of the eigenvalues and
eigenvectors of L. It is shown in Appendix B that, since L is a stochastic
matrix, all its eigenvalues are less than or equal to 1 in absolute magnitude,
and that at least one of them is equal to 1. Also, if all the elements of the
principal diagonal are non-zero, the eigenvalue 4 = 1 is the only eigenvalue
whose absolute value is equal to 1. This condition is, in general, satisfied
for human populations: it is equivalent to saying that there are no
communities which, in every generation, send all their members to other
groups, so that none remain in the original group.

The matrix L can then be written in the form:

L=USU™!.

If we assume that the eigenvalues of L are distinct !, then the matrix S
is a diagonal matrix whose non-zero elements are the eigenvalues
Aty Ay ..y Ay Of L (see Appendix B):

2, 0.0
N L
N

Using the results for stochastic matrices developed in Appendix B,
we see that the product U §8 U~! (=I#) tends towards a matrix in which
all the rows are identical, and equal to the column eigenvector associated
with the eigenvalue unity.

The product of this matrix with the matrix Q, will therefore give a
matrix Q in which all the rows are identical. This shows that in the limit,
the genic structures of all the groups will become the same. This limiting
genic structure, s, depends on the initial structure Q, of the set of popula-
tions, and on the migration matrix L.

The speed with which the difference Q,—Q tends to zero depends
only on the eigenvalue with the largest modulus, other than A=1.

1.1.1. Some particular cases. The simplest case is that of two groups,
of which only one receives migrants from the other; the migration matrix

! The result derived here does not depend on this assumption, but the proof for the
general case is too long to give here.
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1l-m m
L:
o]

where m is the proportion of individuals in group 1 who came from
group 2. It is easy to see that:

o T [

:[(1—6m)g 1—(11—m)g]_

in this case is:

0 1
Asg— o0, - [ 0 ], and the genic structure of the first group, which

1
is the only one of the two structures which will change, tends towards that
of the second group. The genic structure of the first group will be essen-
tially equal to that of the second group after the passage of g generations,
where g is of the order of 1/m.

In the slightly more complex case of reciprocal exchanges, the
migration matrix is of the form:

L—_—[l—ml my ]

m, 1l-—m,
This gives the equilibrium:

ms my
5 — my+m, my+m, _ )

m +m, m+m,
If the initial genic structure of the set of two populations was:
1—
Q,= [P1 P1]
p, 1-p,
the limit of the genic structure of the population would be:

pimy+pymy . pimy+pom

|
O— m; +m, m; +m,
pimytpyiy o Pifptpaiy
m; +m, my+m,

It is obvious that this structure depends both on the initial structure and
on the migration matrix.
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1.2. Changes in Genotypic Structure

The genotypic structures of the different groups will tend, like the
genic structures, towards a common limit, as g — 0.

However, until the homogenisation of the populations is complete,
the populations will have different genotypic structures. This state will
last for a period of time which is greater the lower the migration rates.
The heterogeneity which remains at any time can be measured by the
deviation of the actual genotypic structure S of the whole population,
from the theoretical structure of the population in Hardy-Weinberg
equilibrium, with the same genic structure as the population in question,
i.e. the corresponding Hardy-Weinberg structure.

Suppose that the size of the k-th group (which is assumed to be very
large) is N,; we shall write N =) N,. Then the genotypic structure of the

k

set of groups can be written as:
NS Y NGSR
k _k

S=TN N

Hence, the overall genic structure is:

Z N, s,
s=-Fk_
N
and so the corresponding Hardy-Weinberg structure is:

)
Sp=3°.

The deviation of the actual genotypic structure from the corresponding
Hardy-Weinberg structure is therefore:

Z Ny (s =5 )2

k

Y. N
:mkN —$ = 3)

S"‘SP

The i-th diagonal element of this trimat is:
Z Ny(pix—p)* —v,
k N

where V;; is the variance in gene frequency of the i-th allele between groups.
The element in the i-th row and the j-th column is:

2Y Ne(pix—p) (pj—p))
k kN jk j =2I/”
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where V; is the covariance in frequency of the i-th and J-th alleles. The
elements of the trimat S — S, will thus all be equal to zero at the equilib-
rium state, when all the variances and covariances are ZEro.

1.2.1. The two allele case. In the particular case when there are only
two alleles, the difference between the actual genotypic structure and the
Hardy-Weinberg structure can be characterised by a single coefficient.
This can be shown as follows. Write

s=(p,q) with p+g=1.
Then we have:

Z Nk(Pk_P)Z Z Nk(Qk—q)Z
k k
N B N
2 Z N Pr g
k
N

=V

We can therefore write:

S-S v vl 1
CPT oy vy T 2o

If we define f by the relation:

V=fpq
we can write:
2
pq 4D gp
S=Sp+ =Sp+ —~
Pf—2pq pq Pqu‘ 2pq ¢
or
S=(1—f)Sp+f Sy | (4)

where Sy is the corresponding homozygous structure of the population
with the same gene frequencies as the population in question.

This corresponds to the classical formulae of Wahlund (1928) and
Wright (1943). If we compare Eq. (4) above with Eq. (24b) of Chapter 8,
it is clear that they are formally identical, and that fhere plays the same
role as the coefficient of kinship « in the earlier equation. However, in the
general case, with any number of alleles, we do not have a single coeffi-
cient which measures the inbreeding effect of subdivision of a population;
when there are more than two alleles, the trimat S —Sp depends on more
than one coefficient. It is also important to notice the difference between
o and f. The coefficient o is a probability, while [1s the ratio of the variance
in frequency between the groups to the product pq of the mean frequency
over all the groups.
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1.3. Applications to Actual Populations

This model can be applied in a number of ways, according to the
kind of data that is available. Very few genic structures of different human
populations are known for more than short periods of time. However,
a number of cases are known where several sub-populations have been
formed by migration from a large population and have colonised new
areas. Assuming that the genic structure of the population of origin
has remained unchanged, and that the groups of migrants were represen-
tative of the population they came from, we know the initial structures
of the new sub-populations; Q, is thus assumed to be the same as the
present-day structure of the population from which the new populations
originated. If we know the number of generations g which have elapsed
since the colonisation occurred, and the present genic structure Q, ofa
colony, we can deduce the migration matrix L, using the relation:

QgZLgQ().

1.3.1. The black and white populations of the United States. This method
has been used by Glass (1955), Glass and Li (1953) and Roberts and
Hiorns (1962) to estimate the rates of migration between the black and
white populations of the U.S.A. :

Glass and Li (1953) give data for 4 loci (14 alleles). They assume that
the gene frequencies in the white population have remained constant,
and that 10 generations have passed since the two populations first came
into contact. This corresponds to the case we gave above where:

L_[l—m m]
Lo 1

These authors obtained estimates of m which were all of the same order

of magnitude:
0.028 <m<0.056.

If the present migration rate is maintained (mean m=0.036) the equilib-
rium frequency of the R° gene (rhesus blood group cDe), for example,
would not be attained until 60.7 generations had passed; this corresponds
to 1670 years, if we take 27.5 years as the generation time in man. Also a
migration rate of 0.03 would mean that about 30%, of the genes of the
present “black” population must have originated from white ances-
tors.

Roberts and Hiorns (1962) basing their calculations on more up-to-
date views about the original populations from which the black popula-
tion was derived, obtained estimates of m between 0.02 and 0.025.
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1.3.2. The Sudanese Nilotes. In this case, data are available on inter-
marriages between different tribes. Knowing the genic structure at any
time, we can use these to find the structure at a given time in the past or
future, on the assumption that the migration rates are constant in time.

The data show that marriages between members of different groups
are in general rare®. For example, Roberts and Hiorns (1962) give the
following matrix of frequencies of marriage between three Sudanese
tribes, the Nuer, Dinka and Shilluk:

0.9850 0.0125 0.0025
L=]0.0138 0.9775 0.0087 |.
0.0000 0.0098 0.9902

With these migration rates, if the genic structures of these popula-
tions are different, it would take a large number of generations for these
populations to reach an equilibrium. It is because of low migration rates
between groups that we can talk of human “races”. The results of this
section show that, if the population sizes of the different races are effec-
tively infinite, genetic differences between the races must steadily decrease,
and eventually will disappear altogether. In Section 2, however, we shall
see that in the case when the sizes of the groups are finite, heterogeneity
between the groups may be maintained by random fluctuations in allele
frequencies.

1.4. Deterministic Models of Migration when Other Forces
for Change are Acting

In the following sections, we shall continue to assume that the sub-
groups are all of infinite size, and that the matrix of migration rates does
not change with time.

1.4.1. The continuous-time model of migration3. If we assume that
migration, reproduction and death occur continuously in time, as is
reasonable for a human population, we can write the genetic structure
of a set of m populations as the matrix Q(t), which is a function of the
continuous variable ¢. Let us define a matrix M such that in a small
interval of time dt we have:

Q(t+d1)=Q(t)+MQ(t)dt +terms of order (dt?)

? These rates are, however, much higher than mutation rates, which, as we saw in
Chapter 11, are of the order of 10~ 5.

* This model has been studied by Roberts and Hiorns (1962); they made the implicit
assumption that individuals are capable of reproducing as soon as they are born. Courgeau
(1971) has studied the case when there is a lag between birth and the beginning of reproduc-
tive life.
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so that:
dQ(t)
dt

Note that M is not a stochastic matrix, but that it must satisfy the relation
Y. m;;=0. The matrix M +1, where I is the unit matrix, is therefore a
J
stochastic matrix.

If we assume that all the eigenvalues p ; of M are distinct, as we have
done previously, it follows from the theory of differential equations that
Eg. (5) has the solution:

=M Q). 5)

Q()=U S U~ Q(0)

where § is a diagonal matrix whose j-th term is equal to e*/.

As before, if §* tends to a limit as ¢t — oo, then the genic structure of
the population tends towards a limiting structure. We have seen that the
matrix M +1 is a stochastic matrix; it follows that all its eigenvalues are
of absolute magnitude less than or equal to 1. Now, the eigenvalues of
this matrix are equal to 1+ yu;, where u; are the eigenvalues of M. It
therefore follows that:

|[1+p;/<1  for all values of j.

If p; is real, we therefore have u;<0, hence e** will tend towards 0
(if u;<0) or 1 (if p;=0), as t — co.

If u; is a complex number, we can write u i=T; (cos @ +1sin ©). The
preceding condition gives r; cos ©® <0. Hence:

e,ujtzerjtcos@erjitsiné)

If cos @ <0, the first term on the right hand side of this equation
tends to 0 as t— oo; the second term can be written

cos(r; t sin ©)+isin(r; t sin )

and this is always finite. In this case, therefore, e*/'—0 as t—co. On the
other hand, if cos @ =0, we have r;=0, hence e*/'=1.

Thus, as t > oo, §* tends towards a particular matrix, and Q(t) has a
limit. Therefore, as t— co, the genic structures of the different groups
become identical, as in the discrete-time case.

If there are just two groups, and the migration matrix is:

[ —m;  my

M= ]
L my,  —m,

1 0
S= 0 e—(m1+mz)] .

we obtain:
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Hence:
1 —m 1 0 m;+m m, +m
Qs :[ 1] [ ] 1 2 1 2 { a0
(0) 1 m,| L0 e~tm+m) 1 1 ©)
my +m, m, +m,
m2+mle—l(m1+mz) ml(l_e—t(m1+mz))
m;+m m;+m
= 1 ~t . ) 1 —t(2 ) Q(0).
m, (1 —e~tim+m) m; +m, e (m+m:
As t — oo, therefore:
M o m
Q) — my +m, m; +m, Q(0).
m, my

my +m, m, +m,

This continuous-time model of migration is of interest when the
population is studied for only a small number of years. However, the
study of the limits shows that these are identical in both the continuous
and discontinuous cases, as can be seen by referring back to Eq. (2); the
only difference is in the rate at which the population approaches the
equilibrium state.

In the discontinuous case, the rate of convergence towards the
equilibrium can be obtained from:

Q:[l —-ml] [1 0 ] m; +m, m; +m, Q,
§ 1 m2 O {1'—(m1"‘m2)}g —'1 1
m; +m, my +m,
my +my {1—(m; +m,)}® my (L= {1—(m, +m,)}*)
_ m; +m, m; +m, 0
my (1= {1 —(m, +m,)}?) my +my {1—(m; +m,)}® |70
m; +m, m; +m,

Thus when the migration is discontinuous in time, (Q,—Q,) tends to
zero as (1 —a)®, where a=m, +m,. In the continuous-time case, however,
this difference tends towards zero as e~ “%, when the unit of time is the
generation time. The discontinuous model therefore predicts a more
rapid approach to the limit than the continuous one. The difference is
greater the larger a is, i.e. the greater the amount of migration which
takes place.
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1.4.2. Migration and mutation. We shall now examine the case when
the genes are subject to mutation. The probability (or rate) of a mutation
from one allele to another is assumed to be the same for all the groups of
populations. Let v,, be the probability of mutation from allele 4, to A4,
(so that v, =1— ) v,).

y¥x
The frequency p{#” of the i-th allele in the k-th group before mutation,
but after migration, is given by:

P =Y L pls
After mutation, this frequency will have changed to:

(2) _ ,,(g)* (g)* )*
pE=p& — Zviypkgi + vaipgch

y¥i x*i
=p& [1— X o]+ X v D&
y*i x¥Fi

— (g)*
_Z Uxipkgx .
x

Writing V for the stochastic matrix of order n x n, whose terms are the
v, this relation can be written:

Q,=LQ,_ V=I:Q, V.

We have seen that when the eigenvalues of the matrix L are all
distinct, I tends towards a matrix 2 whose rows are all identical. With
the same conditions, V¥ tends towards a matrix Y whose rows are all
identical. Therefore, under these conditions, the product I[5Q, V% also
tends towards a matrix whose rows are all identical, and it is easy to
show that this matrix is Y. In this case, therefore, the limiting structure
is independent of the initial structure of the population and also of the
migration matrix L. It depends only on the matrix of mutation frequencies.

Malécot (1948) has treated the particular case of two alleles. In this
case, writing u for the mutation rate v,, and v for v,;, the matrix Y is
equal to:

v u
u-+v u-+v
Y=
v u
u+v u-+v

Thus, for example, the frequency

pi§ -

u-+v
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The speed with which the gene frequencies P tend towards their
limits depends only on (1 —u—v)%. The limiting value is therefore essen-

: . 1
tially reached when g is greater than approximately e Now, we have
u+uv

seen that mutation rates are generally of the order of 10~ °. Therefore
the time necessary for the gene frequencies to be equalised is very high,
of the order of 10° generations.

However, migration rates are usually much higher than mutation
rates. Hence the set of populations will at first behave as if mutation
did not occur, and will tend towards an equilibrium structure Q, which
is a function of the initial structure and of the migration matrix L, as we
showed above. Later, this structure will slowly move towards the equi-
librium structure Y under mutation, which depends only on the matrix
of mutation rates. In the first stage, we would find inbreeding effects due
to the splitting-up of the population, but in the second stage Hardy-
Weinberg frequencies would be satisfied. It is, however, important to
realise that these conclusions are based on a quite unrealistic model; in
particular, we have had to assume that the mutation and migration
rates remain constant throughout all these stages.

2. Stochastic Models with Migration

We shall now consider a finite population divided into m groups of
sizes N, between which migration can occur. First of all, we shall assume
that all the other conditions for Hardy-Weinberg equilibrium are
satisfied. We shall study the limit to which the distribution of gene
frequencies in the different groups tends, and the values of the first two
moments of this distribution; these provide a measure of the differences
between the groups, at equilibrium*. We shall then study some cases in
which some of the other conditions for Hardy-Weinberg equilibrium
are dropped.

In order to define the conditions under which 2N “successful
gametes” are drawn in generation g, we have to make several assumptions.
First, we assume that the number of gametes produced by members of
generation g —1 is very large. From this assumption, it follows that the
gametes which will go to form the new individuals of generation g are
drawn from an essentially infinite pool of gametes, among which the
genes have the proportions p&~!. We also have to assume that the
sample of these gametes which will go to form males has an identical
composition with the sample of gametes which will form the females of

* See footnote to p. 364.
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generation g. We are thus implicitly assuming that the sampling is with
replacement.

With these assumptions, the number of successful gametes 2N, p{&
which carry the i-th allele is a binomial variate; the probability that it
takes the value n,; (which is an integer such that 0<n,;<2N,) is:

2N, . |
P(nki):( " k) {p=Vymei {1 — plg— DY 2Nie=mei,
ki

As we saw in Chapter 8 (Eq. (35)) the mean and variance of p{¥, given the

value of p&~Y), are:

E,_ {p&}=p&",

(g—1)f (g—1)
pE L =pET )
I/g—l {p;(gl)}: 2Nk ‘

We shall now examine how the introduction of migration modifies
these equations.

2.1. Migration

We shall use the same notation as in Section 1 for the migration
matrix L, which is assumed to be constant from generation to generation.

Also, consideration of Eq. (1) of Section 1.1 shows that we can con-
sider the changes in the frequency of one allele in isolation from the
others. The frequencies of the i-th allele in the m groups constitute
a column vector:

(g)
Pii

(&)
p3i

P!
We shall leave out the index i in what follows.

Finally, we assume that migration takes place before the start of the
reproductive period, and that individuals remain in the same group
throughout their reproductive life. This is in particular the case when we
consider the case of matings between individuals who belong to different
groups, e.g. different races or tribes, in man.

2.1.1. The expectations of gene frequencies. Since migration is assumed
to occur before reproduction, the genic structure from which the gametes
which will go to form generation g are drawn is:

p(g)* — Lp(g_l).
After the random draw, the genic structure obtained can be written:
p(g)sz(g—1)+E(g)
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where E® is a column vector whose k-th element ¢® represents the
chance variation in the frequency of the allele in question, in the k-th
group. The expectation and variance of ¢{?, given the genic structure in
generation g — 1 are:

g 1{e(g)} 0

(g)* {1 p,(cg)*}
2N, ‘

Vet {efcg)}

g—

The expectation of p'® is therefore:
E{p®}=E[E,_, {p®}]1=LE{p®~"}.

If the genic structure of the initial generation is assumed to be known,
the solution of this equation gives:

E {p(g)} =E;p(0)_

Thus the expectation is the same as for the deterministic case treated in
Section 1. As g— o0, E {p®®}—p, which is a vector whose elements are all
identical. This vector depends in general on the migration matrix and
on the genic structures of the initial sub-populations.

In the particular case when one group sends migrants to all the other
groups, but does not itself receive migrants from other groups, this
result shows that the expected frequency of the allele in question will
become the same as the initial frequency of the “colonising” group.

2.1.2. The second moments®. We shall write the covariances and
variance between the different groups as:

u(g) =Cov {p(g) (g)} — ”;5)’
(g) _ )
u) =V {p®}.

We shall also need the conditional variance and covariances, given
the genic structure of generation g — 1, which we shall denote by U 5~ b,

We want to find a difference equation for the u%) in terms of the
u%~ Y, and to see whether this leads to a limit for the set of ul®), as g —o0.

Flrst let us examine the conditional covariances (and variances). If
the gene frequencies in generation g—1 are assumed to be known, we

> The variances and covariances are found as follows. We suppose that we can make
repeated “trials”, each time starting the ensemble of populations in the same initial state,
and that we observe the outcomes in a particular population (for the variances) or pair
of populations (for the covariances). The variances and covariances are calculated over
the different “trials”. When the set of populations reaches a steady state (in cases where this
can occur), these variances and covariances are equivalent to the variances and covariances
between the different populations in the set.
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obtain:
=0 = (¥ L[ —E ()}

X {Z lkw[P$§~1)“E{P£§_l)}]}+Eg—1(ejek)-

Assuming that the gametes in the j-th and k-th “pools” are sampled
independently, we have:

lf ‘]:*:k. Eg__l(ej €k)=O,

B (1=l
2N, '

J

if ‘]—_—k‘ Eg_l(ej ek):

The expectation of the conditional covariance gives us the a priori co-
variance:

E ("} —EL(p"}?]
2N,

) (g—1)
uji - Z Z ljz lkw uzgw +5jk
z w

where 9, =01if j+k and J;;= 1. Now we know that:
E {P}g)*} = Z ljk E {pff'”}
k

E[{pf"}*1=[E {p*"}1*+ E[(p{*" — E {p¥"})*]
=D WEDE P+ Y L b, u Y.
k zZ w

Thus the a priori covariances in generation g can be expressed in terms
of the covariances and expectations in generation g — 1.

We saw in the last section that E {p{*} tends towards a limit p: this
limit will be effectively reached when g exceeds a certain number which
is a function solely of the eigenvalue of L with the largest modulus other
than 1. We shall assume in what follows that this limit has been reached.
Then the equation for u§) given above takes the simplified form:

(g) Ok \ -1 p—p’
ujk =ZleZ lkw(l——ixf—) u, +6jk 2N .
zZ w J J

We can write the covariances and expectations as column vectors
with m? elements®:

. : .. m(m—1) :

We could write them as vectors with — elements, since u;;, =u, ;, but the form
we have used is easier to handle in the formation of the matrix 4, which we use below; for
doing calculations, however, the vectors with the lower number of elements would be
preferable.
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] [ p—p*
N,
ul®) 0
ulg) 0
2
D—p
Vo=| uf R = N
2
), 0
2
u(g) p—p
3
| u®) | 0

We shall also introduce the matrix A4 of order m? whose elements are:

0; )
2N,

ars: ljz lkw (1

(where the two subscripts j and k determine the row number r, and the
pair of subscripts z and w determine the column number s).

In this notation, the relation between the variances in generations g
and g—1 becomes:

Vo=AY,_ | +R. (6)

If we again assume that E {p®'} is effectively equal to its limiting value
from generation g onwards, we have:

Voen= A", 4 Y 4. ™)

j=0

For rows for which j=+k, the elements of 4 sum to 1; when j=k, the
sum of these elements is 1—71%—. Now it is known that for a non-singular

J
matrix A=(a;;) whose elements are all greater than zero, the following
property holds:

minimum s; <A< maximum S;

n
where 5;= 3 a;;
=1
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and / is the eigenvalue with the largest modulus. Furthermore, the two
relations can only be equalities when all the “row-sums” s,, ..., s, are
equal 7, and we have seen above that this is not the case for the matrix A
which we are considering. It follows that all the eigenvalues of 4 are less
than 1 in value.

If we assume, as before, that the eigenvalues of the matrix A are all
distinct®, 4 can be written as:

A=US"'U"

where S is a diagonal matrix whose non-zero elements are the eigenvalues
of A.

Since we have just shown that all the eigenvalues of 4 are less than 1
in absolute value, it follows that, as g — o0, 4% (i.e. US? U ~!) tends towards
a matrix all of whose elements are zero. Eq. (7) thus tends towards the
expression:

Voun=2, A R.
j=0

To determine ¥, _,, it thus remains to determine the limit of

g . g I3
Z AJ=U( SJ) U-!
j=0 j=0
as g — 0. g
The matrix Z S’ consists of terms of the form:
j=0

LHA+A% 4 28

where 4 is an eigenvalue of A. This is a geometric series. Since |1| <1,

1 g8
= The matrix ) A’

—_— i=o

the series tends, as g— o0, towards the limit
therefore tends to a finite limit:

! 0 0
1"‘}.,1
0 ! 0
A*= 1—4, _
1
|
i 1=, |

" For a proof of these results, see Gantmacher (1959), Vol. 11, p. 63, remark 2.
® The result remains valid when this assumption is dropped, but the proof is long and
tedious.
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and ¥, , tends towards the limit:
VYV =A*R.

¥ therefore depends on the set of eigenvalues of 4, and on the vector
. Another method of finding ¥~ is to write the equilibrium condition
Ve="Y¢-1=7, which, from Eq.(6), gives ¥ =A% +%. This matrix
equation can be solved to give ¥.

It is also possible to show that the speed with which the variances
approach their asymptotic values is a function both of the speed with
which the mean approaches its limit (which is a function of the largest

g
eigenvalue of L that is less than 1), and the speed with which Y 4/%
j=0
tends towards its limit. This is a function of the largest eigenvalue of A.
The following case is of interest. Suppose that the k-th group is
infinite in size and that migrants from this group go to all the other
groups, but that group k itself receives no migrants. We have seen that
the expected genic structures of the other groups tend towards that of
the k-th group. Let us now examine whether the variance also tends
towards a limit. Since the “colonising” group k is of infinite size,
p—p’
2N,
we have V¥ =0 and V¥ =0. The relation between the second moments
in generations g and g—1 can therefore be written, excluding this k-th
group:

=0; also, since the k-th group does not receive any migrants,

¢2“=/Y72L1+%%'

where the vectors ¥ and &' are of order m> —m=m(m—1) and the
square matrix A’ is of order m(m— 1). Furthermore, since the k-th group
sends migrants to every other group, we have:

m2

Y a,<l.

S=m+1

Therefore the vector Y..n tends towards some constant vector, as
n— co.

Consider the case when there are just two groups, one of which is
infinite; the other group is of size N, of which a proportion m are migrants
from the first case. This is a particular case of Wright’s (1943) “island
model”. It is easy to prove that the variance u, of the group of size N is
not zero, since it must satisfy the relation:

1 1—
u,=(1—m)? (1 _?ﬁ) Ug_y +£~(2—N~I—)l



Stochastic Models with Migration 369

where p is the frequency of the allele in question in the infinite population.
The limit u of u, as g tends to infinity satisfies the relation:

2 1 p(1-p)
u[l—(l m) (1—2N)]— N
Hence:
. p(l—p)
I1+4Nm—2m-2Nm?+m? "’

When m is small, we can neglect terms in m, N m? and m2, and then:

w_pﬂ—m

 1+4Nm ®)

Now let us find the rate at which u, will approach u. We have seen that
this depends on the value of the eigenvalue of L which has the largest
modulus less than 1; in this case, this is m. The quantity E {p®}—p
can be considered as essentially equal to zero when g is greater than
approximately 1/m. Assuming, therefore, that this quantity is equal to
Zero, we can write:

1
Uy, —u=(1—m)? (1———2——N—) (Ug g — 1)

1

==m" (1-51) -

1 n
z(l—Zm—-W) (u,—u).

1
This shows that when n exceeds the order of magnitude of 2m+—2—ﬁ,

the equilibrium state will have been reached. Thus this state is reached

: 1 2N : : .
after approximately —n;+m generations. Notice that this is the

maximum number of generations that must elapse before equilibrium is
attained.

Bodmer and Cavalli-Sforza (1968) studied the two-allele case when
the gene frequencies remain close to 3. Using the transformation: p®'=
sin? O, where © is in radians, they obtained the following expression
for the conditional variance:

1 1\?
ey — —
Vo1 {O¥)} SN, +0(Nk) 9)

which is independent of the gene frequencies in generation g.
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In this case, it is not necessary to assume that the limit of E {p{®’} has
been attained, and we can study the change in the variance simply from
the first generation onwards. If we write:

[ 1
8N,
0

we have:
g

. |
Ve=AVo+ Y AR=) AR

j=0 J=O

The results obtained by Bodmer and Cavalli-Sforza for the case
when there are groups which send out migrants to other groups, but
which do not themselves receive migrants, show that the approximation
expressed in Eq. (9) remains satisfactory so long as the gene frequencies
are not close to 0 or 1. The variance increases rapidly with time, and
reaches its equilibrium value after a number of generations which is of
the order of 1/, where « is the smallest proportion of migrants from an-
other group that any group receives.

2.1.3. Alternative methods of investigating the effects of migration.
Another way of studying the second moments of the distribution of
gene frequencies (which is due to Malécot, 1948) consists of considering
the coefficient of kinship between individuals in two sub-populations,
k and j; this coefficient of kinship @,; is defined as the probability that a
gene taken at random from the gamete poolin group k is identical with
a gene taken at random from the gamete pool in group j. It can be shown
that the a priori variance and covariances between groups can be ex-
pressed in terms of the coefficients of kinship, as follows.

We introduce the random variables X, ; these take the value 0 or 1
according to whether the y-th gamete in the k-th colony (out of the 2N,
gametes in this colony) is the allele in question or not. We can then write:

Lxg yay
() —_¥ (8) —

-
¥4
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We know that once equilibrium is reached E {p{}=E {P!¥}=p. The
covariance in gene frequencies between colonies is found by the formula:

1
TN L ELXE —p) (X2 —p)].
N

J yz

) i
Cov {pi¥, pi¥'} =

We have to consider two possible cases; either two gametes drawn
one from the k-th colony and one from the j-th colony are identical by
descent — the probability of this is @&, hence we can write, remembering
that X7, =X, :

E{X®—p)’}=E{(X®)*} —p>=p—p2.

The other possibility is that the two genes drawn are not identical; this
has the probability 1 — $), and in this case we have the following relation:

E{(Xi8—p)(X®—p)} =0

because the two draws are independent. We therefore have:

Cov {pi¥, pi*’} = x4 N, Ny(p—p*) & = (p—p?) &2

NN,
In a similar way, we find that:

2
p_
VP =(r—p?) o+ £F— (1~ afg).
k

If

1 . . ) .
57 can be neglected in comparison with (), we therefore obtain:
k

VD) =(p—p*) o).

These expressions enable us to study the moments of order 2 in terms of
the coefficients of kinship.

2.2. Stochastic Models of Migration
with Other Evolutionary Forces also Acting

In this section we shall study the effects of migration together with
mutation and linearised selection pressure. We shall consider only the
stationary state which the population will reach, and we shall assume
that the dispersion of gene frequencies around the point of equilibrium
which they would reach under selection alone is small, so that selection
can be linearised.

2.2.1. Migration and matation. We now introduce the possibility of
mutations, whose frequencies are given by values v,,, as in Section 1.4.2.
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We assume that migration occurs first, and that then mutation occurs
at the time of production of an infinite number of gametes by the members
of the group; finally the “successful gametes”, which will go to form the
members of the next generation, are assumed to be drawn at random.
We will have to consider all the alleles at the locus in question, and cannot
consider just one of them, in isolation; we shall therefore use the matrix Q

of gene-frequencies again.
We have seen that, before the drawing of the successful gametes:

(8)* — (g—1)
pkgi —vailkrpr%c
xr

where p,; is the frequency of the i-th allele in the k-th group. Consequently:
EQ)=LE(Q,_ ;) V=LEQ, V~

Thus the change in the expected gene frequency is the same as for the
deterministic model: as g—o0, E(Q,) tends towards a matrix ¥ whose
rows are all identical. Let the expected frequency of allele 4, be p,. The
covariances and variances will be written:

Cov (pyi» plj) = Uyyij and  V(py)=uthyi;-

The corresponding conditional covariances and variances will be denoted

by uklu and ukku
We can write the following expression for the conditional covariances:

1) _ 1 1
*l(f, ) Z Uy by (PETY Px)z v, lis ngy ) —p)+E,_i(e;e).
Vs

The a priori covariance is therefore:

Ou1i; E{Di: P} ¥ E{pi (1 —pi)}
u;cgl)u— Z le yi Ikr llsusgsx)}) : 2Nk ! + ! 2Nk

xrys
O - DiDj (Pi—l’iz)
- Z sz yj lkr ls(l_ 2Nk) uf'gsx)})—éklu 2N: +5klu 2Nk

xXrys

where:
5k1ij=0, ifk+lorifk=Iland i=j

5kkij=1’ lfl:':_]

Oklu'—(), ifk-_-*'—'lor ifl#j
fii=1
5,=0, if k%l
6’(’(:1'
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This can be written more simply in matrix notation if we assume that
the means have reached their stationary state by generation g. The pair
of indices k and [ which refer to the sub-populations will be used to define
the row number, and the pair of indices i and j, which denote the alleles
in question, will be used to define the column number. We then define the
following matrices:

A: asquare matrix of order m* whose terms are of the form

0
b b (1= =28 )
krllss(1 2Nk

W': a square matrix of order n?, whose general term is Uyi Uy

U,: a matrix of order m* x n?, whose general term is u

rsxy:*
R: a matrix of order m* x n? in which the only non-zero terms are
rvkij» and these are equal to:

Pibj ... . pi—p}
_ g d
N, i) an 2N,

ifi=j.

In this notation, the expression for the covariance above becomes:

U,=AU, ; W+R.
This gives:
Uppn=A"U,_, W"+ Y 4/ RW/.
j=0

Now we know that 4 has no eigenvalues equal to 1, so that 4" — 0, and the

limit of U, ,, as n— oo is equal to the limit of the sum:

U= Y 4/RW/.

j=0

This limit can be found by solving the matrix equation:
U=AUW+R.

2.2.2. Migration, mutation and linearised selection (the two allele case).
We make similar assumptions to those in the preceding section: migration
is assumed to take place first, then mutation and linearised zygotic
selection, and random sampling of the gametes is assumed to occur last
of all. It is not difficult to obtain useful expressions for this type of model,
for the case of a locus with just two alleles. We shall therefore drop the
subscript for the allele in what follows, and will confine our attention to
one allele.
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If the frequency of the allele in question is p®’ in the k-th group, it
will be changed, after migration has occurred, to:

(g) — (2)
pkgl—zlkrprg .
r

Mutation and linearised selection can be taken into account by a coeffi-
cient h of approach towards the equilibrium position, at which the value
of p is p. The gene frequency after this second stage will then be:

P& =p& —h(pi —p)-
Finally, the effect of chance during the random draw of the 2 N, gametes
can be expressed as follows:

PtV =pi el

As before, we have

E 0} =0, V()=

Pl (1~ i

2N,

The passage from one generation, g, to the next, g+ 1, can be expressed
by the matrix equation:

p(g+1)—p=(1 —h) L{p(g)——p} +e(g)

where p is the column vector whose elements are all equal to p.
It is simple to derive the following expression for the mean gene fre-

queéncies: E{p(g+1)_p}=(1_h)LE{p(g)_p}_

This shows that E {p® — p} tends to zero, as g—oc; hence, in the limit,
E {p®} tends towards p. The expectation of the gene frequency in a group
therefore tends to a limit which is independent of the initial gene frequency
in the group.

We shall now study the special case of a simple migration matrix,
such that the groups are arranged in a linear order, and each is of constant
size¢ N and exchanges a fixed proportion m of migrants with the two
neighbouring groups which lie on either side of it (Fig. 12.1). We assume
that no other type of migration occurs. This model is called the “stepping-
stone” model of migration.

| | 1
| 1 I
| : |
| ! :
i ! |
I | !
| t |
| g :
! I !
- - +

X-1 y-1 y y+1

Fig. 12.1. Exchange of migrants between neighbouring groups, with constant migration
coefficient
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The asymptotic stationary state is defined by relations of the following
form:
thy=(1—h)* {m? (Me—1, 11 F U1, 141 Fi o1y 41)

+m(1—-2m) (Uk—1,t+”k+1,l+“k,1—1 +uy 41)+(1 _zm)z Uy}

5kl (f)_pAz)
x(l- TN ) +5k,———2N )

It turns out that the covariance between colonies depends only on the
distance between them. If we write d for the distance between two groups,
k and [, and neglect terms in m?, we have the following expression for the
covariance between populations situated at a distance d apart:

Cov(d)=(1—h)* 2m[Cov(d+ 1)+ Cov(d— 1)]+(1 —4m) Cov(d)}

(p—p?) s (1—h)?
2N KON

(10)

+ Oy, [(1—4m)Cov(0)+4m Cov(1)].

In the case when d+0, Cov(d) is therefore defined by a second order
difference equation; the solutions of this type of equation are known (see
Appendix A) to be of the form p¢, where u? satisfies the relation:

r=1=h? 2mp' L 2mpd= + (1—4m) u}.
Neglecting terms in h* and in h m, this equation simplifies to:
p=(1—4m—=2h)u+2m+2m u?
which gives: L
2|2 ——) 1=0,
U (+m u+1=0
=1+ " + h +h
B=2Tm  amz T

As d— o, the solution Cov(d) remains bounded; it is therefore only
necessary to consider the root which is less than 1. We then have:
h h? h }"

Cov(d)zll{l—l— m TV Tz +E

(11)

where 1 is a constant which can be determined as a function of Cov(0),
as follows.
From Eq. (10), we have the following relation for d=1:

Cov(l)=(1-4m+2h)Cov(1)+2m Cov(0)+2m Cov(2).
Replacing Cov(1) and Cov(2) by the values given by Eq. (11), we obtain:
2mAp*—@m+2h) Au+2m Cov(0)=0.
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Hence:
A=Cov (0).

Now let us calculate the variance in gene frequency between colonies
V(=Cov(0)); this comes from Eq.(10):

p—p*—(1—4m—2h)V—4m Cov(l
V=(1—4m—2h)V+4mCov(1)+p p”—( n ) m OV().

b

2N
Hence:
p—p*-V
dm+2h) V-4 ="
(4m+2h) m Cov (1) TN 1
A_AZ—V
20/ dmh+ryv=L_P " "
2N-1
If N is large, 2N— 1~ 2 N, so we obtain, finally:
Y
V= PP . (12)
1+4NV4mh+h?
This enables us to find the general expression:
- a2 2 d
p—p h h h}
Cov(d)= 1+ - +—> . (13)
@ 1+4N 1/ 4mh+h? { 2m 4m*  m

When the changes in gene frequency due to migration are high, com-
pared with those due to mutation and selection, & can be neglected, in
comparison to m, and Eq. (13) simplifies to:

A a2 d

p—p h
Cov(d)= 1—V: .
@ 1+8N]/mh{ m}

This can be approximated by the exponential formula:

p—p
L+8N |y mh

i ) .. Cov
This shows that the correlation coefficient

Cov(d)= g dVhim (14)

decreases exponen-

tially with distance, and also that the correlation is independent of N,
the size of the sub-populations.
These results are due to Malécot (1966).

2.2.3. Migration and mutation in a spatially continuous population.
A rather different type of model of the interaction of stochastic factors
and migration has been studied by Wright (1943, 1946) and Malécot
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(1948, 1969). In this model, the population is assumed to be continuously
distributed in space, over an infinite line or plane. Although the total
population size is infinite in this model, as in the discontinuous “stepping-
stone” model discussed above, differences in gene frequency between
different points on the line or plane can arise, because the parents of
an individual born at a given point are themselves likely to therefore
have been born nearby, and they therefore have a finite chance of being
related. Wright has reviewed his approach in his book (Wright, 1969),
so we shall here confine ourselves to a consideration of Malécot’s
method, for the simple case of a linear continuum.

It is convenient to treat this problem in terms of the coefficient of
kinship, rather than in terms of the variances and covariances of gene
frequencies. As we saw in Section 2.1.3, results obtained in terms of the
coefficient of kinship can be translated into variance terms. We shall
consider how to determine the coefficient of kinship, @(x), between
two individuals who were born at o and f, which are a distance x apart
(see Fig. 12.2). The limit, @ (0), of @ (x) as x tends to zero is the inbreeding
coefficient of an individual in such a population, since two individuals
born a distance 0 apart are, in fact, the same individual.

In the case of migration along a continuous line, we have to charac-
terise the migration process by a continuous function, the “migration
distribution”, which specifies the probability density g(y) that a parent
of a given individual was born at a distance y from the place where the
individual himself was born (we shall arbitrarily assign a negative sign
to displacements in the left-hand direction in Fig. 12.2, and a positive
sign to displacements to the right, with respect to the birth-place of the
individual in question). We shall assume that the probability density
g(y) 1s independent of time and also of the position of the individual
in question, i.e. that the migration is homogeneous in both space and
time. Clearly, we have:

[ gdy=1.

-— 00

We will also make the simplifying assumption that the number of
individuals per unit length, p, is independent of position. The number
of individuals in an element of length dx is thus p dx.

Finally, we shall assume that the probability that a given allele

mutates to some other allele is the same for all alleles, i.e. that Z v;j

JjFi
(see Section 2.1 of Chapter 11) is the same for all i. We shall denote this
probability by v.°

? Note that it follows from this assumption that the mean frequencies of all the
alleles, at equilibrium, are the same.
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Referring to Fig. 12.2, we want to calculate the coefficient of kinship
& (x) between individuals I and J, who were born a distance x apart.
We shall assume that the population has reached a steady state with
respect to the distribution of allele frequencies, so that @(x) remains
constant from generation to generation. Let us consider the relations
between two genes, one drawn at random from I and one from J. Suppose
that the first comes from the parent I' of I, and the second from the
parent J' of J. The probability that I’ was born in a neighbourhood of
length dy around a point y, a distance y from a is g(y) d y; the probability
that J' was born in a neighbourhood of length dz around 6, a distance z
from f is g(z) dz. The probability that I’ and J' both come from a neigh-
bourhood of length dz around the point 6, a distance z from S (and

Y
Generation g-1 i J
7 o

Generation g

5!
—t @iz e e e

i
|
|
|
1
{
|
i
i
5
J

Fig. 12.2. Distances between parents and offspring in a spatially continuous population

therefore, from Fig. 12.2, a distance x+z from «) is g(z)g(x+2z)dz. In

this case, there is a probability of that I' and J' are the same

pdz
individual. If this is the case, the probability that the two genes are

1+2(0)
2

identical by descent is , given that neither of them has mutated.

If the two genes are descended from different individuals in genera-
tion g—1, who were born a distance (x — y+z) apart, their probability
of identity by descent is @ (x— y+z).

Taking all the possibilities into account, and noting that the chance
that neither gene has mutated is (1 —v)?, we obtain:

4’(x)=(1—v)2{ | Jox—y+2)g(ygl2)dyd:z

— 00 — (15)

1 f"o [ 1+@(0)
P

: —¢(0)]g(x+z)g(z)dz}.
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@ (0) 1s subtracted from —1%(0—) in the right-hand integral, to correct
for the fact that the left-hand integral should include no contribution
from the cases when the two genes come from the same individual.

This integral equation can be transformed into a linear differential
equation with constant coefficients by replacing ®(x—y+z) in the
double integral above by its Taylor series:

(z—y)

P(x=y+2)=P(x)+(-y) P+

o (x)+

If we neglect terms in v?, and those containing the differential
coefficients @'(x), " (x) etc. multiplied by v, we get:

20B(x)—F(x) | | (—y)g0)g(2)dz

(p// W o
x)j f(z v e(y)giz)dydz+---
100
—T_ng (x+2)g(z)dz

The left-hand side of this equation includes the moments of the
dispersal distribution. If we assume that this distribution is symmetrical,
so that odd moments are equal to zero, then, neglecting moments of
higher order than 2, we obtain the expression:

—20) ¥

200 (x)—c* ®"(x)= 2
p

f g(x+2)g(z)dz. (16)

Since g(x-+z) tends towards zero with increasing x, it must be
negligible for large x. For large x, therefore, @ (x) is given by the solution
of the differential equation:

(=23 (x

which gives the exponential form for @ (x):
@ (x)oceV2ulxlio, (17)

To determine @ (0), the inbreeding coefficient, we require the solution
of the fundamental Eq. (16). It can be shown that this equation has the
solution:

1—-®0) ® G*()

—itxdt
47 p _§w 2v+oct

®(x)=
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where G(t) is the Fourier transform of g(x):

o]

G(t)= | e"*g(x)dx

(with t a real number), and i=) — L.
For the case of a normal dispersal distribution such that:

QR
(x)=——e 27
& V2no
we have:
a2t
G(t)=e *
so that:
1

(18)

The even moments of order 2 and higher of a normal distribution
are all powers of ¢. It is therefore reasonable to neglect moments of
higher order than 2, provided that the unit of distance with which we
are working (i.e. one over which there is a significant decline in genetic
relationship) is large compared with the standard deviation of the
migration distribution.

These results can be compared with those obtained with the very
similar discontinuous model of migration which we studied in Section
2.2.2. If we assume that only two alleles are present at the locus in
question, it follows from the discussion of Section 2.1.3, together with
the assumption of equal mutation rates for all the alleles (so that

P (0 : :
p=1-p=3), that —7(1“1 measures the variance in gene frequency

between regions, and measures the correlation coefficient of gene

4
frequency between populations separated by a distance x. Eq.(18) is
clearly analogous to the corresponding expression of Section 2.2.2,
Eq. (12), if we equate 2m with ¢* (which we can do if we take the distance
between adjacent groups in the model of Section 2.2.2 as unity). Eq. (17)
is analogous to Eq. (13).

A similar model can be set up for the case of dispersion over a two-
dimensional plane. If migration is assumed to follow a normal dis-
tribution, with the same standard deviation, o, in all directions, then
the following expressions for @(0) and &(x) are obtained:

1
1-8npao?(1/log2v)

®(0)=
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and when the distance x is large:

d(x)c 1 e~ V2ulxllo,
X

The effect of migration is clearly very sensitive to dimension: @(0) is
smaller in the two-dimensional case than the one-dimensional case,
and @ (x) falls off more quickly.

3. Data on Migration in Human Populations

In all the models which we have discussed so far we assumed that
the matrix of all the migration rates between different populations are
known. These were assumed to remain constant during the whole period
of approach to the stationary state. We also made further assumptions
during the development of several of the models; in particular we had
to assume that all migration occurred before the reproductive period.

We shall now compare these hypotheses with some observational
data on human migration, from various countries.

We shall first discuss some of the many models that have been
proposed which would afford a precise description of migration and its
evolutionary consequences.

3.1. Models of the Migration Process

First, we need to define the term “migration” more clearly. As
population geneticists, we are obviously not interested in short-term
movements of individuals, but only in permanent migrations from one
population to another. In particular, we are concerned with “matri-
monial migration”, which can be measured in one of two ways.

1. By comparing the places of birth of individuals with the places
where their offspring are born (we would therefore have to take the
migrations of both parents into account).

2. By comparing the birthplaces of men and their wives.

3.1.1. The principal types of model. Many studies have shown that
the number Y, of migrants from one community a to another b depends
on the distance between the two communities, and on the size of both
of them. The most commonly used model gives Y in terms of these
parameters, according to the equation:
PG f(b) ds

ab™

(a)ds(b)
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where 6(x) is the density of the population at x, r is the distance between
the two places, k and o are constants and ds(a) and ds(b) are the areas
of the two places in question. This is called the Pareto model.

Stouffer (1940) has tried to substitute a measure of “social distance”
for the measure of geographic distance in this equation; social distance
is defined in terms of the total number of migrants from community a
who are found in all the intervening communities between a and b.
It is obviously very highly correlated with geographic distance, and
only empirical data can tell us which model best fits a given population.

Hégerstrand (1957) considered a different model of migration. He
assumed that the migration rate at any time is closely correlated with
the rates at earlier periods. One of the parameters in this model is
therefore the number of migrants from a to b, n years before the time
we are considering; another parameter, which implicitly introduces the
distance between the two communities, depends on the number (assumed
to be small) of individuals who move to b but are not attracted there by
earlier migrants.

Other, more complex, models introduce a variety of socio-economic
variables. Olsson (1965a, b), for example, showed that the geographic
distance that a migrant moves depended on eight parameters which
could be used to characterise the migrants. The distance moved thus
sums up information of many different sorts about the migrant.

Models of matrimonial migration are usually analogous to the first
two types of model.

3.1.2. Some applications to real populations. The Pareto model has
been applied to population data from several countries (including
France, America, Sweden and Japan), and generally gives satisfactory
agreement with observed migration data. The coefficient o, which was
intitially thought to be a constant, has, however, proved to vary from
one region to another, and also in time.

For Swedish populations, for example, Hégerstrand (1957) found
values of « from 0.4 to 3.3; the large values mostly corresponded to
migration in rural communities, and the small values to towns. o was
generally found to decrease with time.

Courgeau (1969) studied migration in French populations, between
1896 and 1962. He found that a could be taken as equal to 2 for the
whole of this period, by introducing a correction term [, which is a
function of time. The expression for Y then becomes:

Y., =5(a)3(b) (%H) ds(a)ds(b)

which gives good agreement with observation.
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The finding that migration rates change with time means that it is
not strictly valid to apply the genetic theory we have developed above
to human populations, since this theory was based on the assumption
of constant migration rates.

A difficulty of the Pareto model is that it is not applicable over the
whole of the interval (0, x0), since the number of non-migrants (r=0) is
undefined. This can be overcome, by introducing a constant f, and
writing the equation for Y as:

d(a)o(b)
(B+r)*

In order to find the frequency distribution of migration starting at a
point a, we must know the form of the territory in which the migration
occurs, and the population density at all points. Two particular cases
give simple results. First, we can assume that the territory is uni-

dimensional (e.g. a valley), and that the density is constant. The proba-
bility distribution is then of the form:

(x—1) p*~!
(B+r)
Alternatively, we could consider the territory to be an infinite surface,
and assume constant density . We then have the following probability

distribution: (a—1)(a—2) -2 r
(B+ry

Cavalli Sforza (1962) used a model similar to this one, in a study of
matrimonial migration in a valley in Parma:
- T(o)

Y,=k ds(a)ds(b).

fr)=

for r=0.

flr)=

—kr a-—1

r

f(r)

where

()= [e *x*"'dx.
0

This model using the I" function of Pearson is easier to fit to empirical
data than the one given above.

The Pareto model has been compared with Stouffer’s model, for
American and Swedish population data, and both proved almost
equally satisfactory. However, Hégerstrand’s model was shown, in a
Swedish population, to be greatly superior to the other two. It is also
capable, in a modified form, of fitting data on migration in French
populations, and their changes between 1896 and 1962. Unfortunately,
this model has not yet been applied to population genetics.
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3.2. Comparison of the Genetic Models with the Models of Migration

The models of migration in human populations and of the genetic
consequences of migration were developed independently. We would
therefore like to know whether the assumptions on which the population
genetic theory is based agree with the observations of anthropologists
and demographers.

3.2.1. Migration independent of time. In the theoretical sections of
this chapter, we generally assumed that migration rates were constant
in time. This assumption is not necessary for the study of deterministic
models, since it is possible to write L, for the migration matrix in
generation g, and we then have:

ngLgQg—lngLg—l ...ngo.

If migration rates are constant, or only change gradually, this equation
allows us to study the changes in the genetic composition of a population,
and even to predict future changes.

However, when we dealt with the stochastic model of migration we
assumed that the population had reached its stationary state. If migration
rates are changing in time, this assumption is clearly invalid.

Studies in Sweden have shown that migration rates were effectively
constant from 1785 to 1870, but have since changed considerably. This
also appears to be the case in France, since 1896. Thus it is probable
that European populations were in a stationary state before 1870, and
could have been studied using our stochastic model, but that these
populations are at present changing, and are far from the new stationary
state which they may one day attain.

There may, of course, be populations which have not undergone
this process of change, so that we could use the stochastic model. It is,
however, important to establish over a long period, that the population
is really stationary. Cavalli Sforza (1962), for example, states that migra-
tion rates in the province of Parma have remained the same for three
centuries.

These considerations show that it would be desirable to have a
treatment, not only of the stationary state, but also of the changes in
the variance before this state is reached. Bodmer and Cavalli Sforza
(1968) have studied the changes in variance from generation to generation,
with various migration matrices. However, they did not consider the
possibility of the migration matrices changing with time.

3.2.2. The nature of the migration matrices. Most genetical models
of migration involve matrices of migration rates. Non-genetic studies
of migration, however, consider migration as a function of distance. We
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have described one genetic model which has this property, and others
have also been developed by Wright and Malécot. However, the
probability distributions for migration to various distances which
these models use (usually the normal distribution) do not correspond
to reality at all. It would be desirable to study models like this, but
incorporating migration distributions which agree better with observa-
tions on migration, and to see what changes this introduces.

Another important point is that most genetic models of migration
assume constant population density over the whole of the area in
question. This is of course quite unlike the situation for human popula-
tions, which vary greatly in density, in particular if we compare country
areas and towns.

Finally, the probability distribution for migration is usually assumed
to be the same for all points of origin, whereas studies on real populations
show that there can be large differences between different populations.

For these reasons, it would seem that there is as yet no satisfactory
treatment of the genetic consequences of migration which is continuous
in space.

However, as a first attempt to study this problem, we can use the
matrix model. We can divide the population into a larger or smaller
number of sub-populations and calculate the rates of migration between
the sub-populations, whose sizes and gene frequencies are known. Then
we can predict the future genetic state of the population, provided that
the migration matrix can be assumed to be changing slowly.

3.2.3. Stability of marriages. In a discrete-generation treatment of
migration, we assume that mates remain together, once a couple has
formed. This is not the case in human populations. In order to allow
more than one migration during a lifetime, we would have to make a
model with overlapping generations. Many studies have been done of
the probability that an individual who has migrated once will do so
again during the next n years. It is often assumed that second migrations
follow the same frequency distribution of migration distances as the
first ones; it would be desirable to see whether this is a reasonable
approximation to the real situation.

Although this factor could thus be introduced into the genetic
theory, it seems probable a priori that the effect would be slight.

4. Conclusions

Observations on real populations show that several of the assump-
tions behind our theories of the genetic effects of migration are of
doubtful validity, when applied to human populations. The stochastic
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models developed by Malécot (1948, 1969) are possibly applicable to
populations of the snail Cepaea nemoralis (Lamotte, 1951), but cannot
validly be used for man, since migration rates in man change considerably
with time. Since we do not know the limit towards which human migra-
tion rates are moving, we can only predict future changes in the short
or medium term. For further understanding, we need a theory of the
changes during the approach to equilibrium, as well as of the stationary
state. This will require precise knowledge of the rates of matrimonial
migration between groups. Sutter (1958) and Sutter and Thanh (1962)
give data which show that these are very similar to the rates of migration
between groups, so that we can probably use this type of data in genetic
studies.

It should perhaps also be mentioned that our assumption, in Sec-
tion 2.2 that mutation rates and selection coefficients are the same
in all groups, may not be valid. Malécot (1966) has developed a model
in which these values depend on the group in question. Under this
model, we can no longer estimate the migration rates from the variance
between groups, unless we also know the mutation rates and selection
parameters for all the groups; conversely if the migration rates are
known, we could estimate the parameter which characterises the muta-
tion rate and selection coefficient. However, this model has only been
developed for the stationary state.

Finally, it is important to remember that all the models we have
discussed assumed that migration occurred between the gamete pools
(assumed to be of infinite size) of the different groups, and not at the level
of individuals. In this way, we could consider the frequency of a gamete
in a group after migration as deterministic, and the only random stage
was the stage of drawing the useful gametes.

In fact, of course, migration takes place because individuals move.
This introduces another random process into the system, so it is only
the expected frequency of a gene in the group who migrate which is
equal to the frequency in the group they come from.

If we also consider the number of migrants exchanged by two groups
to be random variable, instead of deterministic, we have a third random
stage. It is very difficult to study such a model, with several random
stages, except by “Monte Carlo” methods. These will be described in
the next chapter.
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