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CHAPTER 7

NEW APPROACHES AND METHODOLOGICAL INNOVATIONS IN THE
STUDY OF PARTNERSHIP AND FERTILITY BEHAVIOUR

Daniel Courgeau”

A. INTRODUCTION

The aim of this chapter is to give a general
review of certain novel ideas concerning the
study of partnership and fertility behaviour.
This will not be an exhaustive review of the
various developments that have occurred in
demographic methodology during the last
decade. Instead, it will focus on three main
areas of methodological innovations and
new approaches in demography.

First, partnership and fertility
behaviour can be considered as part of an
individual’s general life course. A person’s
educational, employment and residential
histories are no longer treated as dependent
characteristics that influence partnership and
fertility behaviour, but as interacting
processes. The life course in one arena may
influence the life course in another, and vice
versa. As a result, partnership and fertility
behaviour no longer occupies a central
position in these studies, which instead
extend over a very wide range of subjects.
The new approaches developed to undertake
such multi-state analyses have been
responsible for important methodological
innovations and have contributed to the
emergence of a new paradigm in micro-
demographic research.

Secondly, a macro-approach has
been the impetus for the application of
classical mathematical techniques to multi-
state life-tables, where different
demographic events can be incorporated into
life tables of increasing complexity.
Partnership and fertility behaviour may be
introduced  alongside  mortality  and
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migration flows between observed areas, in
a multi-regional model. However, the use of
transition intensities restricts the analysis to
linear models that produce cycles in age
structures and regional populations, which
vanish as the system reaches the stable
situation. Recent experimentation with more
complex systems has led to the development
of non-linear models capable of generating
persistent oscillatory or erratic behaviour in
certain areas of their parameter space. Here,
then, is the basis for a shift in paradigm,
with analysis of the predictable behaviour of
linear  models  being  replaced by
investigation of the dynamics of non-linear
models, which can display unpredictable
equilibrium behaviour even when they are
completely deterministic.

Thirdly, demographers have, in the
past, usually undertaken analysis at a given
level: either the individual level, as in the
first of the fields described here; or at an
aggregate level, as in the second. It has long
been known, however, that results obtained
using aggregate-level data can differ
markedly from those obtained using
individual-level data. The task then is to
understand why such discrepancies occur
and to find ways to overcome this problem.
This begins by recognising that an
individual behaviour or process at the micro-
level always occurs in a particular macro-
level context. Each context presents a range
of opportunities and restrictions for
individual action that vary depending on the
aggregate level at which it occurs. The
analysis of complex structures can be used
to identify the mechanisms responsible for
these effects and to explain some of the



discrepancies observed between individual
and aggregate data. The analyst has the
possibility of working simultaneously at
different levels of aggregation, with the aim
of explaining an individual’s behaviour or of
understanding the working of the system at
an aggregate level.

In what follows we review the
methodological innovations associated with
these new perspectives. This paper is
concerned mainly with developments in the
1990s, though discussion of the changes
involved sometimes requires reference to
earlier periods.

In order to illustrate in more details
such innovations, we will use examples
taken from our own research, as well as
from other authors.

B. INTERACTING PROCESSES

Till present, most researchers considered
partnership and fertility as separate,
independent processes. Under the classic
paradigm in demography, each of these
single  phenomena is analysed as
independent of the other, and as occurring in
sub-populations, each of which is required to
remain homogeneous. The intention is to
isolate a process and to study its properties
in the absence of other processes, i.e. in a
“pure state” (Henry, 1959). In the real
world, however, isolation is never feasible.
This paradigm is at the origin of numerous
problems. It is so restrictive as regards the
events that can be studied that it effectively
precludes entire sectors of demography,
such as analysis of competing events and of
interaction between events. (Courgeau and
Lelievre, 1996).

A new paradigm is required with
which a more complete analysis of human
behaviour can be achieved. Investigation
should be focused not on homogeneous sub-
populations but on a series of individual life
courses involving a succession of different
states. In contrast to the classical paradigm,
the unit of analysis is no longer a single
phenomenon but the individual’s life

history, considered as a complex stochastic
process.

The new paradigm can be
approached by the following postulate:
throughout his or her life, an individual
follows a complex trajectory, which at any
given point in time is dependent on his life
history to date, the information he has
accumulated in the past and the conditions
prevailing in the society of which he is a
member. Using this life course paradigm
(Courgeau and Lelievre, 1996, Willekens,
1999) the successive events occurring during
an individual’s life history can be considered
as a single behavioural process, without
giving priority to partnership or fertility
behaviour. This is the basis for multi-state
event history analysis.

The technique of proportional
hazards models, introduced by Cox (1972),
provided the basis for many demographic
applications of event history analysis in the
early 1980s (Menken et al., 1981; Trussel
and Hammerslough, 1983). However, most
of the models developed at this time took the
form of single-spell models (or else
examined sequences of similar events, such
as successive births) using very restrictive
assumptions and leading to the separate
analysis of fertility, migration, and so on.
These models introduced the effect of
different individual characteristics.

Although some models during the
1980’s did consider the interaction between
different processes (Aalen et al., 1980;
Courgeau and Lelievre, 1986, Courgeau,
1987), such an approach was used more
intensively from the end of the 1980°s
(Keilman, 1993; van Wissen and Dikstra,
1999; Lawless and Fong, 1999). The models
employed correspond to two different
approaches.

1. The causal model

The first way interdependent processes were
introduced was to consider one of the
processes as dependent. The occurrences of
the other processes were then treated as
binary time-dependent covariates whose
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values become equal to one after their
occurrence (Gill, 1992; Blossfeld and
Rohwer, 1995). The assumption is made
here that the current rate of the dependent
process depends on the past history of the
other processes but is taken into account up
to the current interval.

This approach leads to different
causal models, one for each studied process
depending on the occurrence of the others.
The likelihood for all these processes can be
factorised into a product of the likelihoods
for the separate models. This is made
possible by the fact that a change in one of
these processes, at any specific point in time,
t, may depend on the history of all the
processes up to, but not including ¢ This
assumption of conditional independence can
be used in different models, which may
introduce more complex groups, as will be
seen later (Lelievre et al., 1997). Let us
show how this can be modelled.

Let us suppose, to take a simple
example, that the main process has a failure
time 7, while the only other one has the
failure time T7,, and that there are several
time independent covariates given in a

vector Z', for individual i. Under a
proportional hazards model, this causal
approach leads to the following formulation
of the hazard rate for the occurrence of the
first process at time r:

h(| Z'uy)=h(t)exp([1- H,y(t - u,)]
*BZ'+Hy(t-u,)B, +B,Z'D  [1]

where H (t—-u) is a Heaviside function,
equal to 0 if #<u, or 1 if #>u, where u,
is the time of occurrence of the second
process, B,,B,,B, are parameters to be
estimated. In this case the baseline hazard
will be multiplied by exp(B,Z’) if the
second process has not yet occurred, and by
exp(B, +B,Z") when it has occurred. It can

be seen that the influence of the second
process on the first one will be to multiply
the baseline hazard by a constant, and to

change the multiplicative effect of the time
independent covariates.

It is simultaneously possible to
model the transition rate for the second
process, with the first process being treated
as a time-dependent covariate. From formula
[1], we will obtain a symmetrical
formulation for such a transition rate.

This approach enables an easy
generalization of the Cox model and its
related statistical procedures to multi-state
models in  demography, under the
assumption of independent censoring (Gill,
1992).

Such a model can be further
generalized to include a large number of
time dependent covariates, corresponding to
the occurrence of different processes, while
each of these processes may be considered
in a separate equation.

Finally, the inclusion of time-
dependent dummy variables may serve as
proxies for interaction processes that are
hard to observe. For example it is possible to
study the rate of entry into marriage with a
monthly pregnancy-birth process, which can
be presumed to represent a theoretically
underlying negotiation process between the
members of the observed non-marital
couples (Blossfeld et al., 1999).

Such models can be analysed with a
great number of sofwares like SAS, TDA,
STATA or S-Plus (Leliévre and Bringg,
1998).

2. The interaction model

Instead of analysing one of the
interdependent processes in terms of its
dependence on the other processes, this
model focuses on the system of
interdependent processes as a whole. It
involves defining a new joint state space,
based on the various state spaces of the
coupled processes, and then proceeding as in
the case of a single dependent process. If we
have 7 processes, then the system will have

2" different hazard rates to estimate. Some



of these combinations may not be possible,
of course, and must be excluded.

Let us consider the same example as
in the previous section. We will now have
four hazard rates to estimate (2?) instead of
two (Aalen et al, 1980; Courgeau and
Lelievre, 1986, 1989, 1992; Hougaard,
1999a). For the first process we can define
two kinds of rates based on whether the
second process has or has not previously
occurred. Let us call 0 the initial state for
every individual who has not experienced
any of the considered processes. The rate for
the first process occurring to individual, i,
who has not yet experienced the second
process, may be written:

ho (] Z')=hy () expB,2") [2]

For the individuals who have already
experienced the second process at time u,,

the rate for the first process which has not
occurred before this time, may be written:

byt Z'u,) =hy, (tu,)expB,Z2')  [3]

where the baseline hazard may now be
defined as a function of # and u, .

This model is identical to the
previous one only if we suppose that this

function is independent from u, and

proportional to the first baseline hazard. In
this case we can write:

h,, (2, u2)=h01(t)exp(Bo) (4]

and this relationship leads to a synthetic
formulation of formulae [2] and [3], which
is formula [1].

In another situation we can suppose
that this function may be written:
by (tuy)=hy (t—u,)  for t2u, [5]
which leads to a semi-Markov model, in
which the baseline hazard depends not on

age but on duration of stay in the second
state (Courgeau, 1995a). Other situations

may lead to more complex models, which
are no longer Markovian (Hougaard, 1999a).

The two other hazard rates, for the
second process occurring before or after the

first one, are symmetrical to the previous
rates [2] and [3].

Labelled boxes and arrows indicate
the states and transitions for the whole
model in figure 7.1.

When there are no intervening
covariates and when the baseline hazards are
independent of u, it is possible to distinguish
various interesting forms of dependencies
between the two studied processes. We can
see how the previous occurrence of a
phenomenon may influence the future
probability of occurrence of another one. If
this influence is one sided, then we can
conclude for a unilateral or local dependence
(Schweder, 1970): one process will have an
influence on the other, while the reverse is
not verified. If this influence operates in
both directions, then we can speak of
reciprocal dependence. The final possible
case, when there is total independence
between the two events, is very rarely
encountered.

As can easily be shown, this
approach allows the introduction of different
interacting processes. For it to be efficient,
however, very large samples of individuals
are needed so as to obtain large numbers of
interacting events for analysis.

The methods for such an analysis
are not yet adequately developed and require
further research (Andersen et al., 1992).

This approach also permits the
introduction of unobserved common or
potentially correlated factors influencing
both processes. In that case the likelihood
can no longer be factored and the principle
of conditional independence, necessary for
the previous causal model estimation
procedure, no longer holds. The estimation
procedure  presented  here,  permits
introducing such potentially correlated
unobserved heterogeneity (Lillard, 1993).



GENERATIONS AND GENDER PROGRAMME 5

In this case, it is possible to
introduce a set of individual-level scalar
random effects for the transition, from state

k to state |/, Vk',, that are added in the
exponent of the intensity function, as in:

ha(t] Z' @) =h, () expB, 2" 1)+ V) [6]

These random variables are then
presumed to represent selectivity and/or
heterogeneity in the population by picking
up effects of covariates that are not included
in the intensity regression analysis, and that
may be a source of correlation across
equations.

For example, it is possible to capture
the joint or simultaneous relationships
between marriage dissolution and marital
fertility (Lillard and Waite, 1993). In that
case, we will have two sets of equations for
each woman: one for the hazard of
dissolution of her kth marriage and the other
for the hazard of the /th conception in each
marriage,  with  two  heterogeneity
components that represent the effects of
unmeasured latent risk factors which are not
included in the model but which are a source
of correlation across equations. The negative
correlation found between the two
heterogeneity components shows that those
women who have the greatest propensity for
chidbearing also have the lowest propensity
for divorce.

We will see later how this
methodology may be related to a multilevel
model.

3. Some other issues

Much of the discussion so far has been
presented in terms of proportional hazard
models, in which the different characteristics
affect an individual’s rate in a multiplicative
way. This hypothesis has to be verified by
using a non-parametric approach, for
example, and many techniques have been
developed to examine how covariates should
be measured and whether their effects are
constant or not. When the Cox regression
model is found to be inadequate to model

the observed interactions between the
processes, an alternative has to be used.
Various models, such as an accelerated
failure time model, have been proposed to
get a better fit to the data.

Another important theoretical issue
raised by use of the Cox model concerns
unobserved  heterogeneity caused by
omission of important covariates. In fact,
while using a linear normal model, it can be
shown that when the unknown covariates are
independent of the known covariates, the
regression parameters are unchanged. This is
no longer the case with the Cox model.
However, a technique has been developed to
study how omitting characteristics affects
the estimated parameters of the observed
ones (Bretagnole and Huber-Carol, 1988).
When the omitted characteristic s
independent of the observed ones, this
omission has no effect on the sign of the
estimated parameters, but it does result in a
reduction of their absolute values. This
means that if the effect of a characteristic
was significant when other independent ones
were omitted, introducing them in the model
will only reinforce the effect of the first
characteristic. On the other hand, some
characteristics that apparently had no
significant effect may acquire a pronounced
significance when characteristics initially
unobserved are introduced. In contrast, when
an accelerated failure time model is used, it
can be shown that there is no change in the
regression part of the model (Hougaard,
1999b).

Another problem arises when the
sources of longitudinal data, such as the
OPCS longitudinal study, the INSEE
Demographic Panel Survey (EDP) or the
geographic and wealth mobility survey in
19th and 20th century France, contain
fragmentary  demographic  information
(Courgeau and Najim, 1995). For example,
the family history of individuals may be
fully documented via vital registration data,
while their migration or occupational history
may be known only as regards their place of
residence or occupation at the time of a
census or family event. In this case all we
know is that a move has occurred between



two censuses or family events. The usual
methods of event history analysis are unable
to handle such interval-censored data. If the
assumptions are made that no more than one
of the events studied (say, migration) can
occur between two observation times, and
that the events defining the individual’s
spatial or social position are independent of
the geographical or occupational mobility
we want to measure, a valid estimation of
the probabilities of moving then exists, and
proportional hazards models can be
calculated. However, in order to estimate
interaction between two processes (family
formation and mobility, for example) one or
both of the previous assumptions have to be
discarded. Much work remains to be done in
this field.

4. Atomic fallacy

A potential problem for event history
analysis concerns the tendency to consider
individual behaviour as being influenced
only by individual characteristics. The
danger here is of committing the atomic
error, that is, of ignoring the context in
which human behaviour occurs. In reality, of
course, individual behaviour is influenced
by context, and it seems fallacious to
consider individuals in isolation from the
constraints imposed by the society and
milieu in which they live. We will see later
how contextual and multilevel analysis can
be used to solve this problem.

C. NON LINEAR MODELS

Macro-level approaches in demography
were until recently usually associated with
the use of linear models. However, the
hypotheses, which underlie such models, are
remote from real world conditions and
recent efforts have been directed to develop
more realistic models.

1. Multi-state non linear tables

For more than 300 years, classical
mathematical techniques have been used in
demography to produce life tables.
Important generalizations of these methods
in the late-1960s and 1970s led to the

development of non-hierarchical tables.
With these it is possible to accommodate
different forms of decrement from an initial
state, chain together a series of tables,
include re-entrants into states and
differentiate interstate moves by both origin
and destination (Land and Rogers, 1982).

Mathematical models can be built to
describe transitions between the different
states, leading to time-continuous Markov
chain models. Such models consider an
individual life course as the result of a
stochastic process occurring in a given state
space. This process is said to satisfy the
Markov property if its future state depends
solely on its present state; that is, if none of
the states previously occupied have any
effect on the present probability of moving
to another state. However, the process is not
stationary, as this probability may be
dependent on the time at which the step is
being made.

Such hypotheses lead to linear or
quasi-linear models, which are the basis for
population projections. For example multi-
state projections using regional fertility
rates, regional mortality rates and out-
migration rates from each of these regional
sub-populations, produce a stable regional
distribution in the future.

However, such assumptions are very
restrictive and are a crude approximation of
many demographic processes. One way of
analysing non-Markovian processes is to
expand the state space so that the process in
the new space is Markovian. But such an
extension causes inflation in the data
necessary for estimating large numbers of
transition intensities, beyond the capacity of
the usual data sets. In fact for further
advances to be made it appears that non-
linear models must be employed.

If it is accepted that a given
behaviour is linked to the entire past life
history of the individual, we can see that it is
necessary to develop non-Markovian
processes. For example, a fertility behaviour
may depend on feedback mechanisms of the
kind proposed by Lee (1974). Contrary to



GENERATIONS AND GENDER PROGRAMME 7

linear stable population models, which
produce cycles that vanish as the system
reaches the stable situation, such non-linear
models may generate persistent oscillating
behaviours when these mechanisms are
strong enough. Day et al. (1989) present an
extensive non-linear model in which fertility
and population size depend on such
household  characteristics as income,
consumption, preference, and cost of
childrearing, and they derive conditions
under which sustained cycles and chaotic
behaviour emerge. Bonneuil (1990) uses a
nonlinear model that replicates Coale’s I P

index for the Pays de Caux during the period
1589-1700, and shows that mortality
conditions exhibit a bifurcation point for the
fertility index. More recently, has the link
been established between non-linear models
and unpredictable behaviour of the studied
processes (Bonneuil, 1994a).

In the multi-state tables such non-
linearities may arise for a variety of possible
reasons. For example, the fertility behaviour
of an individual who migrates may change
according to the area of destination, but this
change is not necessarily instantaneous and
may be influenced by a memory of the
norms of the previous places in which he
had lived. Similarly, migration from high
mortality areas, such as Northern France or
Brittany, to low mortality areas like Paris or
Southern France, will not free an individual
from his past history, such as a period spent
working in a coal mine, or a past alcoholic
behaviour. Mortality will be linked to this
past history.

The classical model, as indicated
earlier, used fertility, mortality and out-
migration rates. However, such out-
migration rates do not take into account the
attractiveness of destination areas. A more
realistic model will use a migration
parameter, between regions £ and / in some

time interval (to,tl ) , defined as:
M, /(P.(t,).B (1))

Here M, is the number of migrants
between areas k and / during the particular

interval, P,(#,) denotes the population of
the region of origin at the beginning of the
interval, and P(#,) the population of the

region of destination at the end of the
interval. The resulting model is non linear
and no longer leads to a stable regional
distribution in the future: sustained cycles
may appear, certain sub-populations may
disappear, and chaotic behaviour may even
occur (Courgeau, 1995b). For chaotic
behaviour to occur, however, the migration
parameter may reach values that are unlikely
to be encountered in usual populations.

For the analysis of partnership
formation, interacting individuals replace the
interacting regions used for migration. Two-
dimensional marriage rates include in their
denominator an expression of the time both
spouses were exposed to the risk of
partnership formation, or of the numbers of
males and females not yet in partnership.
This two-sex problem has also been
examined using non-linear models with
cycles (Chung, 1994).

Common to these approaches is a
shift in paradigm away from an analysis of
the predictable behaviour of linear models,
to the investigation of the dynamics of non-
linear models which may exhibit chaotic
behaviour even when they are completely
deterministic ~ (Keilman, 1993).  Such
behaviour is unpredictable in the sense that
very small variations in the initial values or
in the parameters can produce sharply
contrasting subsequent changes.

However, this shift to chaotic
behaviour occurs only when some parameter
values have surpassed so-called bifurcation
points. It is questionable whether these
bifurcation points can in fact be attained in
actual populations. Blanchet (1997) has
demonstrated the need for caution and
shown the problematic character of attempts
to build models, which establish the
intrinsically chaotic nature of demographic
dynamics. In addition, a careful balance
must be struck over possible tendencies to
detect chaos whenever explanation and
understanding fail. Chaos and stochastic
processes may be considered as different



approaches to analyse behaviour. The
models, which lead to chaotic behaviour, far
from being stochastic, are entirely
deterministic, being merely the latest
attempts to reduce the apparent disorder of
the real world to simpler macro-laws.

2. Viability Theory

Let us now try to observe what happens
when a random component is introduced
into such models. This can be done by
means of viability theory, which is
concerned with the evolution of non-linear
macro systems in the absence of any
determinism. Developed by Aubin (1990),
this theory has received many applications
in the fields of demography and economics
(Bonneuil, 1997). Its basic premiss is that a
complex social organization can be
described by simple regularities, which have
the capacity to generate durable social
forms. Let us consider its main features in
more detail.

First, the states of the studied system
have to be defined in terms of the various
characteristics that summarize its existence,
such as fertility, income, household size,
consumption, and so forth. These
characteristics are time dependent, but they
must attain certain thresholds for the system
to exist. Such conditions are thus at the
origin of state constraints, such as an income
threshold for an individual to live or a size
threshold for a household to exist. To ensure
its survival, the system can adopt a number
of possible actions, such as a change in
fertility or a change in consumption. These
actions are called 'controls' and can be
situated between certain values. A change in
consumption, for example, is characterized
by a degree of inertia and is limited to a
closed interval.

Once these conditions have been
defined, the evolution of the system can be
formalized, with the derivatives over time of
its characteristics being specified by known
equations, such as a predator-prey
relationship. From among the whole set of
initial states and trajectories the viable ones
can be identified. Viability depends on

finding a trajectory departing from this state
which will always stay within the
constrained set of states. More interesting,
however, is to transform this problem, which
is a global one in the state space, into a local
one at time ¢ : from a given state occupied at
this time what are the possible choices
which will ensure the survival of the
system? No attempt is made therefore to
predict a determinist evolution of the
system, merely to identify a set of
possibilities with which the system can be
maintained.

Contrary to the traditional emphasis
on the study of asymptotic equilibrium in
linear models, this new approach involves
delineating the set of possible evolutions and
actions that ensure the survival of the system
at any time. It cannot provide a precise
forecast of the future for a particular system,
since no single trajectory is preferable to any
other among the viable ones; but it does
allow selection of a set of attitudes which at
any given time is able to keep the system in
existence forever.

When studying temporal
fluctuations in fertility, for example, the
notion of demographic cycles can be
replaced by viability theory. Thus in order to
maintain a particular standard of life,
households have the possibility of modifying
either their fertility or their lifestyle
(Bonneuil, 1994b). When the viability
constraints for the standard of living are
reached, as happened during the Second
World War, considerations of economic
viability lead to a choice between
reproduction and consumption and may
result in sharp jumps in fertility.

3. Ecological fallacy

Multi-state linear or non-linear tables can be
extended in order to identify the relations
which exist between the rates corresponding
to the phenomenon being studied in each
sub-population, and the average values of
different characteristics also calculated for
each sub-population. An analysis of the
fertility rates in different regions, for
example, would seek to link them perhaps to
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the out-migration rates or unemployment
rates found in those regions. Such an
analysis can be said to make possible an
examination of the effect that the groups
being studied have on their own
demographic behaviour. In this case the
aggregated characteristics are interpreted as
being a set of constraints that each sub-
population imposes on its members and
which influence their behaviour.

An analysis conducted on these lines
might, for example, reveal a positive
association  between the rate  of
unemployment in a region and its fertility
rate. There is a real danger of concluding
from this result that individuals who are
unemployed have a higher fertility, whereas
all that is in fact known is that a high rate of
unemployment is accompanied by a high
rate of fertility, regardless of whether the
individual involved is economically active,
unemployed or inactive. This mistake is an
example of what is known as the ecological
fallacy, which occurs when inferences about
individual ~ behaviour are based on
aggregated measures.

D. ANALYSIS OF COMPLEX
STRUCTURES

Although the conceptual origins of the
analysis of complex structures can be traced
back to the mid-1950s, it was only during
the 1980s that efficient and practicable
computational strategies were developed.
These often developed as theoretical
elaborations of questions, which had earlier
been the subject of considerable debate in
sociology (Lazarsfeld and Menzel, 1961),
and produced statistical estimations used
mainly in normal linear models.

As was noted earlier, the study of
micro processes can lead to atomic error,
while the study of macro processes can lead
to ecological error. The best solution to
these problems may thus be to incorporate
both individual-level and ecological
measures in the same analysis. This
approach might include different measures
of the same factor. For example, each
subject would be characterized by his or her

own exposure level as well as the average
exposure level for all members of the group
to which he or she belongs. The aim here is
to explain a behaviour, which is still treated
as individual, while working simultaneously
on different levels of aggregation. The risk
of ecological fallacy is thus eliminated, since
the aggregated characteristics are used to
measure a construction that is different from
its equivalent at the individual level. It is
introduced not as a substitute but as a
characteristic of the sub-population, which
will influence the behaviour of an individual
member. Meanwhile the atomic fallacy is
also avoided by the correct inclusion in the
analysis of the context in which the
individual lives.

1. Contextual and multilevel analysis

Various methods have been developed for
including  both  individual-level and
ecological measures in the same analysis.

The first method, often called
contextual analysis, is a simple extension of
conventional modelling techniques such as
logistic regression or event history analysis.
The model seeks to fit the data at the
individual level and includes both individual
and ecological predictors.

In such models, the characteristic to
be analysed is always considered at the
individual level: kin network size, in a
linear/Poisson  regression model; being
married or not, in a logistic model; age at
marriage, in an event history model. The
explanatory characteristics can be more
diverse. The first step is to introduce
individual characteristics. Next,
characteristics for a given aggregation level
are introduced. These might be the
percentages or averages of individuals
having these characteristics, such as
percentages of married individuals in each
area just before the occurrence of the studied
event. More complex analytical procedures
can also be employed. For example, in
addition to average income, it is possible to
introduce the correlation between income
and matrimonial status.



Other characteristics are more
global and concern the observed units in
their entirety, as for example the number of
hospital beds in an area. These do not
correspond to any individual characteristic,
but they can be aggregated at larger levels.
Thus the number of hospital beds in a larger
region is the sum of the number of beds in
each area of this region. Finally, other
collective characteristics are well defined for
a given level of aggregation, but cannot be
aggregated at larger levels. The political
orientation of a commune, as defined by the
party of affiliation of its mayor, for example,
cannot be aggregated with those of the
neighbouring communes, which may cover a
broad spectrum.

Such a contextual model may
consider the interaction between migration
and marriage, for example, by means of a
simple logit model (Baccaini and Courgeau,
1996). Let us write the probability that the
characteristic to be estimated, y?, for
individual / living in area j is equal to one, is
expressed in relation to the explanatory
individual variable, x”, and the aggregated

one, considered before the study, x7/,
measuring the perception people have on
their surroundings, by a logit model:

P(y’ =1| x",x7)=
[1+exp(-{a, + a,x” +a,x’])]" (71

Applied to young Norwegians, this appears
to indicate that married men have a higher
probability of migration from their region of
origin, than unmarried men. However, when
the percentage of married men increases in a
region, the probability of migrating
decreases for both married and unmarried
men. Such a result highlights the dangers of
inferring individual results from results
obtained at a more aggregated level: the
presence of a large number of young married
men in a region results in a lower probability
of migrating for all the categories of
population. But this does not mean that
married men have a lower probability of
emigration than unmarried men; the exact
opposite is in fact observed.

A serious limitation of contextual
analysis is that outcomes for individuals
within regions are treated as independent. In
practice, the outcome for an individual in a
particular region often depends on the
outcomes for other individuals living in that
region. Ignoring such  within-region
dependence generally results in estimated
variances of contextual effects that are
biased downward, making confidence
intervals too narrow. One response to this
problem of within-region dependence is to
introduce random effects into the contextual
model.

This refinement results in multilevel
models (Goldstein, 1995; Courgeau and
Baccaini, 1997), which are also called
mixed-effects or hierarchical models.
Reconsidering model [7], this approach can
now be formalized in the following model:

P(y’ =1 x*,x/)=p" =

1 +exp(—{a, +u; +(a, +ul)x" + a,x’ "
where u] and u/ are random variables, of
expectation zero. It follows that the answers

y" are distributed according to a binomial

distribution of parameter p” :

y’ = B(p"))

In this case we have the following
conditional variance:

var (y*| p’)=p’(1-p’).
The model then can be written as:

yij =pij +eij2ij

where z/ =\/p’(1- p’) and where the

variance of e’ is equal to unity. This is the
level 1 wvariance, and we shall work
essentially on the level 2 variances and
covariances:

var(ul)=o?, var(u!)=o?, and

cov(u],ul)=0,,
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Different estimation procedures
have been proposed to estimate these
parameters, their variances and covariances.
Methods include those based on Bayes
estimators (Wong and Mason, 1985), on
non-linear model estimation (Goldstein,
1991), and on ‘bootstrap’ procedures (Laird
and Louis, 1987). Such models can be
analysed with sofwares like MIwiN (Rabash
and others, 2000).

For the previous example, a
multilevel model does not change the
estimated parameters, which remain entirely
significant. The random effects, while not
null, do not appear to be significant, thus
inviting the conclusion that the aggregate
characteristic explains the major differences
between regions.

Rather than using individual
characteristics ~ and  their  aggregate
counterparts, as in the previous example, it
may be interesting to introduce structural
and contextual characteristics, which have
no equivalent at the individual level. A good
example of this approach is found in the
study of interethnic marriages of Moroccan
men in Belgium (Lievens, 1998) where
district-level variables are introduced. A
logit model is again employed, in this case
to explain the probability of being married to
a western European partner versus a partner
of the same ethnic group.

An individual level analysis is first
undertaken with the primary purpose of
explaining the probability of an interethnic
marriage using individual characteristics.
The basic hypothesis is that the minority
group members who are more assimilated to
the dominant culture (longer periods of stay,
higher levels of education, etc.), have the
highest probability of being married to a
partner from the majority group. This
hypothesis is well verified in the present
case. The introduction of a district-level
variation does not modify the effect of
individual level characteristics but reveals a
very large variance between districts. Thus
for the highest residual, the odds of being
married to a Western European are 3.17
times larger than the overall probability,

while for the lowest one they are 2.16 times
lower.

District-level variables, such as
ethnic or socio-economic heterogeneity, the
degree to which positions on different
dimensions are correlated (‘consolidation’),
etc., are then introduced to see if they have
an impact and do not even outweigh the
individual effects. From this it emerges that
although these characteristics do play an
important role in interethnic marriages they
do not modify the existing effects of
individual characteristics. Their introduction
explains almost all of the district-level
variance, which ceases to be significant, as
in the previous example.

The conclusion from this example is
that the two different theoretical approaches
- individual versus macro-structural - can
indeed be combined in a multilevel
approach, yielding valuable additional
insights and illustrating the interplay
between these two analytical viewpoints.

2. Towards a multilevel event history
analysis

Multilevel analysis has so far involved
introducing space or social space into the
study of a static characteristic by means of
regression or logit models. The next step is
to introduce time into the analysis, thus
making possible a multilevel event history
analysis.

Individuals are observed throughout
their life. They may move from one area to
another, in which different behavioural
patterns are observed, and some of their
characteristics may change at given times
(they marry, change occupation, etc.).
Equally, the characteristics of the regions in
which they live can be expected to change
over time (increase in the percentage of
married people, increase or decrease of
regional unemployment, etc.).

Obtaining information on all these
changes calls for a new kind of sample
survey that will introduce characteristics
measured at different aggregation levels and



allow the links between individual behaviour
and social structures to be identified. The
aim should be to “set up systems of
observation that are representative of
diversified and hierarchical social contexts,
by combining in a system of integrated
multilevel indicators the contributions of
ecological analysis, individual sociological
surveys and contextual analysis” (Loriaux,
1987). Although the WFS has encouraged
collection and analysis of community data
(Casterline, 1987), the data are generally
collected at the time of the survey, whereas
what is needed is a continuous record. More
recently, the carrying out of Demographic
and Health Surveys in a number of African
countries using the same sampling unit, is an
encouraging development, even if the
contextual characteristics collected are of
limited interest for fertility studies
(Schoumaker, 1999). One possible solution
to this problem is to use data from different
sources but measured in the same area so as
to observe over time individuals and the
areas where they live.

On the other hand, analytical
techniques already exist for calculating a
partial likelihood, which is the ratio of the
hazard of the individual who experiences the
event at a given time, to the sum of the
hazard rates of the remaining population
exposed to the risk. The product of these
likelihoods, calculated for each time an
event occurs, can be maximized by
introducing several aggregation levels
(Goldstein, 1995). It is possible to go further
and to introduce interrelated outcomes
represented by the waiting times to the
occurrence of the events for different
processes.

Let us see in more detail how to
handle such an analysis if we refer to the
previous Lillard approach (see model [6]).
Suppose that individuals are organized into
groups and that individual i in group j has
transition intensities, from state & to state / of
the form:

ha (1) = hy () explB,, +UHZ7 1)+ V) +W,]]

Observed dependencies may be
picked up through the specification of Z7()
by a coefficient f,,, with a possible random

component U}, for group j. In order to

model unobserved dependence between
individuals, we can then introduce a set of

individual specific random variables ¥, and

a set of group specific random variables
w,/ . Some of these models can be analysed

with softwares like aML (Lillard and Panis,
2000). There is much interest in how one
can identify sensible distributions for the

heterogeneity ~variables ¥} and W,

(Horowitz, 1999). However, these results
have yet to be generalized to more complex
multi-state models, introducing individual or
aggregate  characteristics at  multiple
aggregation levels, with different kinds of
baseline hazard functions.

Also, at a given aggregation level an
individual may move to another area during
his stay in the population submitted to the
risk. This can be shown by considering the
study of fertility in different regions of a
country. It is clear that some individuals can
be expected to change residence between
these regions during their reproductive
period. They must therefore be linked to a
new region each time they move, and the
effect of the contextual characteristics of
these regions will influence their fertility
behaviour. A Markov hypothesis can be
made that the behaviour of an individual
depends only on the region in which he is at
present and that when he arrives in a new
region he immediately forget the constraints
of the regions previously inhabited. Yet this
hypothesis is scarcely plausible. The
conditions need to be made less rigid. A
solution is to test the speed of adaptation to
conditions in the new region, if this is what
is observed, or the conditions of selection of
migrants in the region of origin, if the
second hypothesis is confirmed (Courgeau,
1987).

In this way we are led to non-
Markov models of demographic behaviour,
whose complexity has to be added to the
consideration of multiple aggregation levels.
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The social structure of some of the
groups under examination also needs to be
considered. This has been shown to be
necessary in the case of small groups, such
as the family or the household. A full
treatment of their social structure may
require taking into account the interactions,
which occur, between the members of the
group and the changes over time in their
interactions (Leliévre and others, 1997). The
hypothesis of conditional independence may
also be adopted for these models, thereby
allowing models of ‘'shocks' to be
incorporated into the analysis of behaviour
changes induced by events occurring to
other members of the group.

E. CONCLUDING REMARKS

The preceding account has focused on the
three main areas in which major innovations
in demographic methodology have taken
place: multi-state event history models, non-
linear macro system theories and multilevel
models. Developments have of course also
occurred in other fields, which we will
mention briefly here.

Methods originating elsewhere in
the social sciences, and applied in
substantially unmodified form, have yielded
a number of new advances in demography.
A case in point is the application of
statistical methods originally developed for
the analysis of textual data to the study of
itineraries and event histories: these amount
to a ‘corruption’ of textual statistics in that
the words which are analysed are artificial.
These methods are suited to the analysis of
complex trajectories that are difficult to
formalize with event history techniques
(Courgeau and Guerin, 1998). Another
example concerns the procedures developed
in geostatistics under the name of “universal
kriging”, which have been used for the
analysis of the spatial diffusion of
demographic phenomena (Bocquet-Appel
and Jakobi, 1997).

Although some innovations in the
field of household dynamics have been
touched upon, particularly in the discussion
of multilevel models, we have ignored other,

more general models of household formation
and dissolution. In our opinion this field was
characterized by little progress in the 1990s
and is in need of an entirely new theoretical
approach (Murphy, 1996). In a similar
fashion, the problems raised by micro-
simulation models lie not in the
implementation of the simulation itself, but
in the theoretical bases underlying these
models.

We did not develop in this paper the
use of behavioural genetics in order to
explain fertility, as proposed by Hobcraft
and Coleman in Chapters 9 and 10 of this
volume. Even if there are some new
attempts to use these arguments (Kohler and
others, 1999; Morgan and King, 2001), this
approach is an old one: Fisher (1918) tried
to show that biometrical traits might be
studied by genetical methods. However, it
had been shown later that the possibility to
separate the effects of gene and environment
leads to many unsolved problems (Capron
and Vetta in Morgan and King, 2001). In
consequence there is a need to be very
cautious before drawing conclusions from
such an approach.

Last but not least, we have quite
deliberately excluded from discussion the
study of the fertility transition and its
relationship with mortality and mobility
transitions in a long-term perspective. The
changes in this field were significant less in
terms of new methodological developments
than for combining perspectives and
contributions from the other social sciences
(Friedlander et al, 1999; Burch, 1999).
These include inputs from economics, with
the ‘new home economics’, human
geography, with the ‘innovation-diffusion
approach’, sociology, with the ‘adaptation
approach’, ecology, with ‘evolutionary
theory’, psychology, with ‘decision theory’;
and so on.

These new  approaches and
methodological innovations need to be
examined in a more general context of the
interrelationship between the social sciences
and their epistemological bases, as a prelude



to the elaboration of new conceptual
frameworks for explanation.
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Figure 7.1 - Study of interactions between two events: bivariate case



