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Abstract   This chapter aims to contribute to the debate on the role of model-
based approaches, such as agent-based modelling, in the future of demography. 
First we call attention to the developments of the discipline since the 17th century, 
and we describe its four successive paradigms related to the period, cohort, event-
history and multilevel perspectives. We argue that these paradigms are comple-
mentary and that demography, since its beginnings, has subscribed to the classical 
scientific research programme launched by the promoters of modern science. 
Next, we examine how simulation modelling developing in population sciences 
recently, may help to respond to three main challenges: how to overcome com-
plexity in social research; how to reduce its uncertainty; and how to reinforce its 
theoretical foundations. We sketch a model-based research programme for demog-
raphy, looking specifically at interactions between various population systems. 
We then show how this approach might conform to the classical scientific research 
programme, in order to take advantage of its benefits.  

1. Introduction 

Over its 350-year history, demography has progressed through successive para-
digmatic changes, from period analysis (Graunt 1662) to multilevel analysis in the 
more recent period (Courgeau 2007). Currently, the prominence of agent-based 
models (ABMs) has indicated an increased focus on individual behaviours and in-
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teractions in the study of populations, and also a desire to bolster the theoretical 
foundations of demography (Burch 2003ab; Silverman, Bijak and Noble 2011). 
Here we posit that ABMs have a potential to become a manifestation of a broader, 
model-based research programme, which would be much more heavily reliant on 
computer simulations as a tool of analysis. The key advantage of such methods is 
that they allow examining interactions between various elements of complex pop-
ulation systems. In our view, such a model-based approach, while firmly rooted in 
the multilevel paradigm, can form the foundation of the next step in the cumula-
tive progression of demographic knowledge.  

This chapter proceeds first by detailing the successive paradigmatic 
changes evident in the history of demography in Section 2, and then by describing 
the challenges of studying uncertainty, complexity and interactions in population 
systems in Section 3. In Section 4 we discuss the ways of conforming computa-
tional methods to the classical scientific programme outline, and make the case for 
model-based demography as a new research programme for the discipline. Finally, 
in Section 5 we propose a research agenda to address the challenges ahead. 

2. Cumulativity in Demography 

Since the origin of demography in the 17th century, the field has progressed 
through a series of paradigmatic changes. Here we use the term paradigm in a 
somewhat different sense from Kuhn (1962), and from its current usage. We want 
to point out the methods by which the phenomena observed within a population 
have been related to the set of key parameters (fertility, mortality and migration) 
used in demography to explain population growth, decline or stabilization. There 
are four main methods, each implementing a limited scope of notions which we 
call the paradigm of the selected method (Courgeau and Franck, 2007). In this sec-
tion we point to the differences between these four paradigms, and to their possi-
ble complementarity. 

It is important to recall the path taken by Bacon in 1620 in his elaboration 
of an inductive method for scientific thought. He presented it in contrast with the 
dominant way of thinking in fashion at this time (Bacon, 1620, aphorism 19): 

There are and can be only two ways of searching into and discovering truth. The one flies 
from the senses and particulars to the most general axioms, and from these principles, the 
truth of which it takes for settled and immovable, proceeds to judgement and to the 
discovery of middle axioms. And this way is now in fashion. The other derives from the 
senses and particulars, rising by a gradual and unbroken ascent, so that it arrives at the 
most general axioms at last of all. This is the true way, but as yet untried. 

The first way generates what Bacon called the four Idols, where axioms 
are not grounded on a meticulous observation of the properties of nature to be 
studied, but rather on prejudices – unverified notions of human understanding. As 
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Bacon said1, such axioms should not “avail for the discovery of new works, since 
the subtlety of nature is greater many times over than the subtlety of argument”. 
As already argued elsewhere (Courgeau et al. 2014) ‘Idols’ may exist in various 
areas of contemporary population sciences, for example in the form of behavioural 
genetics, postmodern theory, hereditarism, or modern hermeneutics.  

On the other hand, the Baconian “second way” became the modern scien-
tific way of thinking, rising from a meticulous observation of studied facts to the 
“formation of ideas and axioms by true induction”. This method of induction2 
consists of discovering the principles – the ‘first’ axioms, the ‘lesser’, and the 
‘middle’ in Bacon’s terms – of natural or social properties by way of experimenta-
tion and observation. The Baconian induction rests on the requirement that with-
out these principles the properties observed would be different (Franck, 2002).  

Graunt (1662) was the first to apply this method for the study of human 
populations. He no longer considered that phenomena such as births, illnesses and 
deaths were to be seen as God’s secret and therefore out of bounds to scientific 
scrutiny. He studied each event not as a unique one but as one occurring to a sta-
tistical individual, with only a few characteristics. These abstract events became 
fertility, morbidity and mortality, and lost any direct attachment to a given indi-
vidual. This was the only way to begin a scientific study of population, called by 
Petty (1690) political arithmetics, which prevailed for around 200 years. Graunt’s 
research paved the way for demography, epidemiology, political economics, and 
for population sciences more generally.   

Graunt’s demonstration of the links between probability and population 
science was also vital. Probability was first addressed in 1654 by Pascal and Fer-
mat, but their results were published later (Pascal, 1665), and it was in fact Huy-
ghens (1657) who first published a treatise on games, with a foundation for objec-
tive probability. Graunt uses this concept in order to estimate the population of 
London from the number of deaths, using an estimation of the probability of dying 
(Courgeau, 2012). The probability of an abstract event in a human life was used 
for the first time, facilitated by the notion of a statistical individual. 

We can conclude that the population sciences were without a doubt born 
in England, and subsequently led to a more general school of scientific thought on 
population problems. From the end of the 17th and throughout the 18th century, this 
way of thinking developed through the work of many leading European research-
ers such as Halley, Süssmilch, Euler, Moheau, and so on (Courgeau, 2007). 

During the 18th century a new concept of epistemic probability was intro-
duced, first by Bayes (1763), and then refined by Laplace (1774, 1812). In fact, 
the objective probabilistic approach was already showing how through successive 
trials, the estimated frequency tends towards such a probability, as is the case for 
fair games for which we can determine an a priori probability. However, as had 
been already recognised in the preceding century, such a hypothesis was difficult 
                                                           
1 Citations in this and in the next paragraph come from Bacon (1620), aphorisms 24, 39 and 40. 
2 Induction is not taken in the sense of Mill (1843) and his followers, i.e. generalisation from par-
ticular facts. In Bacon's sense, induction designates the complete research process (Section X.4). 
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to justify for events in human life. A new approach was necessary for such events, 
where all we know is the sample observed. Not only is the population from which 
it is drawn unknown, but its very existence is a hypothesis. By using a prior prob-
ability in order to estimate a unique posterior one, the epistemic approach permit-
ted answering these questions clearly. Laplace applied it to many phenomena, in-
cluding a number of population science ones. 

In 1809, in Germany, Gauss proposed the method of least squares, which 
was mainly used in astronomy at this time. Following the work of mainly British 
but also German and French biological and social scientists3, it became widely 
used: by Galton and Pearson in population genetics; Lexis and Quetelet in demog-
raphy; Edgeworth in statistics; Durkheim in social demography; and Yule in eco-
nomic demography. Finally, at the beginning of the 20th century Fisher, a statisti-
cian and population geneticist, developed the maximum likelihood theory and 
theory of statistical inference (see Courgeau, 2012). Population science was com-
ing back to an objective approach, as the development of censuses through the 19th 
century permitted the use of exhaustive samples.  

The problem with many statistical tools from the 19th century, such as the 
least squares method, is often that they assume a particular mathematical structure 
among a limited set of macro-variables, irrespective of whether that structure ex-
ists in the real world. This was already the case for Durkheim’s study of suicide in 
Prussia (1897). This may lead to what is called an ecological fallacy, meaning that 
aggregate data, as a rule, cannot be used to study individual behaviour. The only 
instance where this is possible is when the probability of experiencing the event is 
independent of the area studied and when the population is large enough to cancel 
out any random difference that may appear (Courgeau, 2007). 

Another issue here is related to the type of observations, which are exclu-
sively cross-sectional or period-based. After Courgeau (2007), we can conclude 
that the paradigm of the cross-sectional approach may be defined as follows: the 
social facts of a period exist independently of the individuals who experience 
them, and can be explained by various characteristics of the surrounding society, 
such as economic, political, religious, or social aspects. This cross-sectional para-
digm prevailed in demography till the end of World War II. 

The next change came from the US, where population scientists set up a 
new perspective of cohort analysis, following the pioneering sociological work by 
Mannheim (1928), which introduced the individual’s lived time; Whelpton (1949) 
and Ryder (1951) were the first to promote this approach, and Henry (1959) for-
malised its theoretical underpinnings. The resultant paradigm is defined by the fol-
lowing postulate: “the demographer can study the occurrence of only a single 
event, during the life of a generation or a cohort, in a population that preserves all 
its characteristics and the same characteristics for as long as the phenomenon man-
ifests itself” (Courgeau, 2007, p. 36). We will not go further into this approach, as 
“for the analysis to be feasible, the population must be regarded as homogeneous 
                                                           
3 These fields were not so clearly defined at this time: scientists were working in different social 
or biological sciences and in statistics simultaneously. 
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and the interfering phenomena must be independent of the phenomenon studied” 
(Courgeau, idem, discussing Henry, 1959, and Blayo, 1995). These conditions are 
restrictive, and led to a new approach permitting us to set such hypotheses aside. 

To be able to consider heterogeneous cohorts and to introduce dependen-
cies between phenomena, it became necessary to introduce statistical methods able 
to analyse different processes simultaneously and look at numerous characteristics 
of the studied individuals. The general theory of stochastic processes was first de-
veloped by the US statistician Doob (1953) and was applied to demographic pro-
cesses by Aalen (1975) in Sweden. In demography, it was incorporated through 
the introduction of event-history analysis (Courgeau and Lelièvre, 1992). 

In the event-history paradigm, “individuals follow complex, life-long tra-
jectories that depend, at a given instant, on their earlier trajectories and on the in-
formation they had acquired in the past” (Courgeau, 2007, p. 58). We can identify 
the factors at work – both demographic and non-demographic – and analyse their 
effect on individual behaviour in more detail. In order to do that, it is necessary to 
use surveys that follow individuals along a large part of their life and to collect da-
ta on events, and on the characteristics, fixed as well as time-dependent, which 
may affect these events. However, here we cannot view an individual trajectory as 
the outcome of a process specific to each person. As we observe only a single out-
come (the individual trajectory), the process is not identifiable.  

In this case, we must adopt a collective point of view: all individuals are 
assumed to follow the same random process, the parameters of which we can es-
timate from the observation of a sample of individuals with their own characteris-
tics. At first glance, this assumption seems quite bold. However, it is important to 
realize that this is not a hypothesis about observed people, but about the construc-
tion of a process underlying a set of trajectories. In this case, two observed indi-
viduals do not necessarily follow the same process, whereas two statistical indi-
viduals with the same characteristics do so automatically, as random sampling 
units with identical characteristics (subject to identical selection conditions). Such 
an approach again may require adopting a Bayesian point of view (Ibrahim et al., 
2001), as it looks at many characteristics measured on a sample of restricted size. 

However, the use of individual characteristics may lead to an atomistic 
fallacy, as opposed to the ecological fallacy of cross-sectional studies. By concen-
trating on individual characteristics, we disregard the context in which human be-
haviours occur. As noted by Courgeau (2007), context clearly may influence indi-
vidual behaviour, and therefore isolating individuals from the constraints imposed 
by the social networks of the living environment seems misleading. 

We must then introduce the different types of groupings of individuals 
found in all human societies: social groupings, such as the family, networks of 
contacts (or, more generally, social networks), etc.; economic groupings, such as 
the firm or the organisation where a person works; educational groupings, health-
care groupings; political groupings; etc. In order to consider not only the individu-
al but different groupings we must develop new methods of contextual and multi-
level analysis. These models have been elaborated by American (Mason et al., 
1983) and English (Goldstein, 1987) researchers. 
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Multilevel approaches have permitted us to solve the apparent contradic-
tion between aggregate models and the individual, event-history perspective. 
Thanks to their properties, we can combine the results of the analyses at the ag-
gregate and individual level by clarifying the apparent paradox between them. As 
observed by Courgeau (2007, pp. 79–80): 

The new paradigm will therefore continue to regard a person’s behaviour as dependent on 
his or her past history, viewed in its full complexity, but … this behaviour can also depend 
on external constraints on the individual, whether he or she is aware of them or not. 

This paradigm allows for removing the two fallacies mentioned before (idem):  
The ecological fallacy is eliminated, since aggregate characteristics are no longer regarded 
as substitutes for individual characteristics, but as characteristics of the sub-population in 
which individuals live and as external factors that will affect their behaviour. At the same 
time, we eliminate the atomistic fallacy provided that we incorporate correctly into the 
model the context in which individuals live. 

As we have demonstrated previously demography has advanced effec-
tively thanks to the introduction and refinement of successive paradigms. Each 
paradigm takes the shortcomings of its predecessors as a starting point and offers a 
method for surmounting them – without, however, erasing all the knowledge at-
tained through earlier paradigms. Indeed, for some questions that a population sci-
entist may wish to ask, cross-sectional analysis can suffice just as any other form 
of analysis may be sufficient for other issues. The same is true for some questions 
asked by the physicist that may be answered perfectly by Newtonian physics, 
without taking into account Einstein’s physics. 

However, in demography these developments have not led to a patch-
work landscape of competing approaches, but instead to a cumulativity of 
knowledge, despite being far from linear. This is because different paradigms take 
a different point of view on the studied phenomena, partly preserving some of the 
results of the previous ones, as the multilevel analysis compared with cross-
sectional and event history analysis. As Courgeau (2012, p. 239) has put it: 

Cumulativeness of knowledge seems self-evident throughout the history of population 
sciences … the shift from regularity of rates to their variation; the shift from independent 
phenomena and homogeneous populations to interdependent phenomena and 
heterogeneous populations; the shift from dependence on society to dependence on the 
individual, ending in a fully multilevel approach. Each new stage incorporates some 
elements of the previous one and rejects others. The discipline has thus effectively 
advanced thanks to the introduction of successive paradigms. 

Each of the four paradigms frames the relationship between observations 
and scientific object differently, and in so doing allows for new methodologies 
that can alleviate difficulties associated with other methods, as summarised in Ta-
ble 1. The scientific objects of enquiry in population sciences, such as mortality, 
fertility, nuptiality, migration and so on, are independent of the theory used to treat 
them. By contrast, the relationships assumed to exist between these objects are 
strongly dependent on the key theory underpinning each paradigm: independence 
between them in cohort analysis, heavy dependence between them in event history 
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analysis. Yet, as argued before, each paradigm also occupies a different context, 
and therefore previous paradigms remain relevant despite the proliferation of new 
ones.  

Table 1 The four paradigms of demography – a summary 

No. Paradigm Period Key focus 

1 Period  
(cross-sectional) 1662– Population-level (macro) phenomena, observed and 

measured according to the historical time 

2 Cohort (longitudinal) 1950s– Population-level phenomena, observed and measured 
along the lifetime of individual cohorts 

3 Event history 1980s– Individual-level (micro) phenomena, observed and 
measured according to the individual time 

4 Multilevel 1980s– Individual, population, and interim-level phenomena, 
observed and measured from multiple perspectives 

 
The evolution of successive paradigms is an ongoing process, and the 

paradigms themselves are in a constant need of improvement and refinement, in 
order to be able to answer emerging research questions. Even the multilevel ap-
proaches do not address questions related to interactions between various elements 
of increasingly complex population systems. In particular, micro-level rules may 
be hardly linked with aggregate-level rules, while macro-level rules cannot be 
modelled exclusively with an individual approach, since they transcend the behav-
iour of the component agents (Holland, 1995).  As Conte et al. (2012, p. 336) said, 
in their Manifesto of computational social science, such a micro-macro link: 

… is the loop process by which behaviour at the individual level generates higher-level 
structures (bottom-up process), which feedback to the lower level (top-down), sometimes 
reinforcing the producing behaviour either directly or indirectly. 

We will add that in some cases it can go in the opposite direction of the producing 
behaviour, leading to “perverse effects” as shown by Boudon (1977). 

We must go further, however, as the effects of aggregation levels are al-
ways defined with respect to the individual. For example, a series of individual ac-
tions in a community may foster awareness of a problem that concerns the entire 
community. This may lead to political measures, taken at more aggregated levels. 
These measures will naturally affect individual behaviours, generating new actions 
to offset their perverse effect, and so on. The multilevel approach as described 
above does not allow for inclusion of this two-way flow. More generally it is nec-
essary to identify the different levels as truly different systems of agency, i.e. of 
collective action with different goals, specific resource interdependencies between 
members and specific social processes that help members to manage dilemmas at 
each level. We will see in the following sections, how a model-based research 
programme may answer these challenges. 
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3. From Empirical to Model-Based Demography, and Back: 
Uncertainty, Complexity and Interactions in Population Systems 

The recent evolution of demography and population studies has coincided with 
shifting perspectives on the epistemological challenges facing the studies of hu-
man populations. In particular, demographers are now paying ever more attention 
not only to different levels of analysis, but also to the uncertainty and complexity 
of population phenomena, which are discussed in this section. 

Demographic phenomena – as all other aspects of social reality – are in-
herently uncertain, but to a slightly lesser degree than is the case in other areas of 
social sciences, such as sociology or economics. This comparative advantage of 
population science is largely due to the strength of the underlying relationships, 
such as population accounts and persistence of demographic patterns in time, and 
is helped by the strong empirical slant of population science (Xie, 2000; Morgan 
and Lynch, 2001). Still, particular areas of demographic interest differ with re-
spect to their uncertainty: out of the three main components of population change, 
mortality is usually thought to be the least uncertain, while migration is the most 
(e.g. NRC, 2000). The explicit acknowledgement of the uncertainty challenge has 
led to a renaissance of statistical demography since the 1980s, and to the “return 
of the variance” to demography – an important methodological perspective for all 
four paradigms mentioned above (Alho and Spencer, 2005; Courgeau, 2012)4.  

Uncertainty is vastly augmented by social reality becoming increasingly 
complex. Hence, appropriate tools are required to analyse the associated complexi-
ties in more depth. In demography, the debate on the complexity versus the parsi-
mony of demographic models has been present especially in the context of predic-
tions (Ahlburg, 1995; Smith, 1997; Lutz 2012). However, the evidence regarding 
the relative performance of models of varying complexity is inconclusive. For 
predictive applications it may be tempting to apply Occam’s razor and opt for 
simple models that describe the uncertainty relatively well (Bijak, 2010). On the 
other hand, despite its importance, prediction is not the only goal of enquiry in 
population science (Xie, 2000). If the perspective shifts towards explanation, ex-
ploration, or other non-predictive applications, a different approach is required5.  

From a statistical point of view, model uncertainty needs to be acknowl-
edged as well (Raftery, 1995). If the models themselves are to be formally recog-
nised as yet another source of uncertainty in population studies, next to the under-
lying processes, parameters, and inherent randomness, the most natural and 
coherent way of describing all these sources is via Bayesian statistical inference 
and epistemic probability. Within the Bayesian paradigm there exist several ap-

                                                           
4 Similarly, acknowledgement of the role of space in demography has led to the multi-regional 
perspective within the cohort paradigm (Rogers 1975), later extended to the multi-state case. 
5 See Epstein (2008) for “sixteen reasons other than prediction to build a model”. Conte et al. 
(2012) highlight the capability of “generative” models to reproduce qualitative regularities ob-
served in the real world (the stylised facts). 
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proaches to model error: from a formal model selection out of several competing 
possibilities, and the related model averaging (Raftery, 1995); to including an ad-
ditional model discrepancy (inadequacy) term in the modelling process (Kennedy 
and O’Hagan, 2001). In addition to the appealing prospect of reconciling quantita-
tive and qualitative information in a formal way, Bayesian statistics allows for the 
inclusion of subjective opinion in the process of statistical inference.  

On a larger scale, Bayesian statistics also provides a possible way of rec-
onciling the empirical and computational approaches by returning to empiricism, 
yet at a different level of analysis. All computational models, no matter how com-
plex, have inputs (parameters) – and outputs (quantities of interest). Their mutual 
mapping enables statistical analysis. There are techniques available for this pur-
pose, chiefly Bayesian melding (Poole and Raftery, 2000), and approaches based 
on Gaussian process emulators, also Bayesian (Kennedy and O’Hagan, 2001; 
Oakley and O’Hagan, 2002). Both have already been prototyped in demographic 
applications – the former by Alkema et al. (2007) and Clark et al. (2012), and the 
latter by Bijak et al. (2013), Silverman et al. (2013), and Hilton and Bijak (Chap. 
X, this volume). The application of such methods allows for analysing the proper-
ties of complex computational models within a formal statistical framework, 
which would not be possible with more traditional approaches.  

As demography has started incorporating insights regarding its own epis-
temological limits, new approaches to modelling have begun to flourish. The per-
spective of population science becoming a model-based science (Burch, 2003b) 
has become appealing6, mirroring similar movements within the study of biologi-
cal systems and evolution (Levins, 1966; Godfrey-Smith, 2006). As argued by Xie 
(2000), there are certainly insights to be gained from examining the successes and 
failures of modelling efforts in population biology (see also Silverman, 2016).  

Previous efforts have outlined various approaches toward modelling the 
complexity of population processes, amongst which we can identify two broad 
trends: social simulation and systems sociology (Silverman and Bryden, 2007; Sil-
verman, 2016). The former is concerned with the application of novel modelling 
techniques, primarily agent-based models, to specific populations and situations. 
The latter is a primarily theory-driven enterprise, investigating the consequences 
of various foundational social theoretic positions – along the lines of the ‘opaque 
thought experiment’ role for simulations proposed by Di Paolo et al. (2000). With-
in demography and population sciences, the desire to remain empirically relevant 
– and to strengthen that relevance through more reliable and nuanced predictions – 
has led to a focus on social simulation more than systems sociology approaches. 
Micro-simulations, based on empirical transition rates or probabilities for simulat-
ed (virtual) individuals (Willekens, 2005), clearly belong to this class. 

Within simulation approaches, we also need to distinguish between weak 
simulations and strong simulations (Huneman 2014)7. Weak simulations serve to 

                                                           
6 Burch (2003b) points to Nathan Keyfitz (1971) as the pioneer of the model-based demography. 
7 Following Huneman (2014), we give these terms slightly different meanings than for example 
Thagard (1993, p. 6), for whom the weak simulation is “a calculating device drawing out the 
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test some theory or hypothesis, when the system studied cannot be easily modelled 
by mathematics or when data are limited or unavailable. They are top-down mod-
els, which start from setting the hypotheses and assumptions. Strong simulations, 
on the other hand, aim to “explore the possible outcomes of a simple model” 
without any reference to a pre-existing theory or hypothesis (idem, p. 72). Many 
existing agent-based models often proceed in this way, where simulations are used 
with no pre-existing theory to explain the modelled phenomena, but only some in-
tuitive rules. These models are built from the bottom-up: low-level interactions are 
supposed to produce high-level complex behaviour. As argued by Conte et al. 
(2012), such ‘generative explanations’ are often arbitrary – they also suggest that 
simulation models need to become much more empirical, in order to provide solid 
micro-foundations for the social mechanisms they attempt to model. 

The presence of emerging properties and of ‘downward feedback’ or cau-
sation (from macro to micro) in complex models means that we cannot obtain the 
macro-level patterns by simply aggregating the micro-level outcomes. Instead, we 
need to model both levels jointly. Therefore, from the point of view of the demo-
graphic paradigms, we remain firmly within the realm of the multilevel analysis, 
only using different tools (simulations) to explore multiple layers of population 
processes at the same time. Conte et al. (2012, p. 342) suggested that: 

…simulations must be accompanied by micro-macro-loop theories, i.e., theories of 
mechanisms at the individual level that affect the global behavior, and theories of loop-
closing downward effects or second-order emergence. 

A part of the strength of simulations lies in a potentially wide variety of 
ways to represent the same problems using a relatively simple set of techniques.  
However, there is a real danger that the models can be constructed in an arbitrary 
way, not linked to the observations of the properties of the population systems of 
interest, and thus become manifestations of Baconian ‘idols’.  This problem can be 
exacerbated if the models lack an explicit documentation of their construction and 
core assumptions when simulation results are presented8. In such situations, even 
models with well-grounded and well-justified assumptions, may seem arbitrary.   

Agent-based models are capable of analysing systems of interacting ele-
ments through computational modelling. A part of the appeal of such models is 
their capacity for explanatory power (see Burch 2003a,b; Silverman et al., 2011). 
As such, agent-based models by their very nature are intended to represent the im-
port and impact of individual actions on the macro-level patterns observed in a 
complex system, and vice versa, showing a potential promise to transcend differ-
ent levels of analysis. Such methods can further theoretical understanding of popu-
lation processes (Burch, 2003a; Chattoe, 2003), and using these methods to break 
from the over-reliance of some micro-simulation models on empirical data at the 

                                                                                                                                     
consequences of mathematical equations that describe the process simulated,” while a strong 
simulation “itself resembles the process simulated” (see also Brenner and Werker 2007). 
8 For a discussion of the ABM documentation standards, and the ODD framework (“Overview, 
Design concepts and Details”), see Grimm et al. (2006), as well as Chap. X in this volume. 
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expense of reasonable theoretical explanations and mechanisms9 (Silverman et al., 
2011). As mentioned earlier, however, to take a full advantage of this potential, 
we need to look at how these different levels of aggregation interact, in order to 
better explain social facts. Simple aggregation of individual-level rules to generate 
and validate macroscopic patterns – as often implicitly done in existing agent-
based models – is not sufficient (Conte et al. 2012). 

In population sciences, there are many systems comprised of interacting 
individuals, groups, or institutions which are worthy of enquiry. Population sci-
ences can become model-based by making those interactions between different 
levels in population systems an explicit object of interest. In so doing, our models 
would become capable of representing complex, interacting behaviours at various 
levels, and investigating the roles of different elements of population systems in 
shaping the observed demographic outcomes. Such models of multilevel interact-
ing systems would have clear potential for contributing to theory-building within 
population sciences, and perhaps even social science more broadly. 

Recent years saw an ever-increasing interest amongst population scien-
tists in new modelling methodologies for complex social realities, many of these 
inspired by agent-based computational approaches (see Billari and Prskawetz, 
2003; Aparicio-Diaz et al., 2011; Kniveton et al., 2011; Willekens, 2012; Bijak et 
al., 2013; Silverman et al., 2013). The movements toward computational complex-
ity have been matched by a shift coming from the other direction, as agent-based 
modellers have branched out into areas traditionally covered by statistical ap-
proaches in population science (see e.g. Axtell et al., 2002; Geard et al., 2013).  

Of course, model-based approaches come with their own shortcomings – 
in particular, models attempting to represent the complexities of particular popula-
tion systems are naturally dependent on sensible theories regarding these systems, 
and on their representation.  However, such theories are not only many and varied, 
but can be notoriously difficult to formalise (Klüver et al., 2003), and validate10, 
especially in social science realms (see Moss and Edmonds, 2005). Without such 
theories, it may be difficult to build an adequate model of the systems under study. 
A possible way forward from this conundrum is to reconnect to the classical re-
search programme which promotes some sort of functional-mechanistic analysis 
(Franck 2002a); this will be discussed in the next sections of this chapter.  

A clear strength of population science, and one of the keys to its success, 
is its applied character, responding to the direct needs of policy makers (Xie, 
2000; Morgan and Lynch, 2001; Hirschman, 2008). The methodological develop-
ments outlined above can only further this practical, utilitarian aspect of demo-

                                                           
9 The problem here is not the empirical basis of such models – quite the contrary – but unrealistic 
mechanisms. Particularly problematic are Markovian assumptions of the lack of memory, where 
simulations are based on homogenous matrices of transition probabilities. Examples of micro-
simulation models that allow for heterogeneous transition patterns or mechanisms, e.g. of part-
nership formation, include SOCSIM (http://lab.demog.berkeley.edu/socsim/). 
10 After Franck (2002a), we interpret validation as a continuous process, rather than an achieva-
ble state. 

http://lab.demog.berkeley.edu/socsim/
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graphic enquiries. The Bayesian approach naturally allows formal statistical deci-
sion analysis, which can offer practical support to various decisions which require 
numerical input, for example for planning purposes (Alho and Spencer, 2005; Bi-
jak, 2010). On the other hand, the model-based approach, especially coupled with 
statistical analysis, allows the decision makers to trial a range of policy “levers” in 
a simulated environment. Such experimentation in silico would consist of generat-
ing coherent scenarios, where mechanistic rules governing the behaviour of simu-
lated individuals would be coherent with the empirical patterns for statistical indi-
viduals observed through a scientific lens (Courgeau, 2012). 

Demography needs more simulations to be able to answer new research 
questions, but in order to suit the goals of the discipline, such simulations would 
need to be grounded in the observables, and the models would need to be built in-
ductively (bottom-up), rather than starting from hypotheses and assumptions. To 
address this challenge for the future of demography and population sciences we 
propose a model-based research programme, firmly rooted in the wider functional-
mechanistic approach. If agent-based models, as introduced above, are to belong 
to this programme, they need to be empirically based and scientifically rigorous.  

As a part of this research programme, we posit that demography should 
investigate the interactions between various population systems and the functional 
mechanisms behind them. The interactions and mechanisms are best described by 
formal models based on data and theory-based rules, derived from observations of 
system properties by following the Baconian inductive method. This approach can 
augment the capabilities of the multilevel paradigm, whilst broadening the scope 
of scientific exploration in demography. In particular, it can enable population sci-
ences to enhance the theoretical base of the discipline, whereby theories represent 
formal conceptual systems rather than necessarily empirical ones (Franck, 2002a; 
Burch, 2003b).  

4. Conforming Model-Based Approaches to the Classical 
Scientific Programme Following the Baconian Inductive Method 

How may the model-based approaches we propose for demography conform to the 
classical scientific research programme? This programme is at present generally 
ignored by social scientists – as well as overlooked by philosophers of science – 
because it has been distorted by the empiricist tradition in philosophy, where the 
empiricism promoted by David Hume and John Stuart Mill has substituted for the 
classical empiricism. Francis Bacon’s programme was shared by the other pio-
neers of modern science, Galileo, Descartes, Newton, Huyghens, Graunt, and oth-
ers. This programme tacitly continues to guide research in the natural sciences to-
day just as in the past, yet in the social sciences it is often abandoned.  
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To start with an illustrative example, consider the famous model of a neu-
ron (McCulloch and Pitts, 1943), the ancestor of the now-ubiquitous artificial neu-
ral networks, which is shown in Figure 1.  

 
Fig. 1: The McCulloch and Pitts (1943) model of a single neuron 
Source: Adapted from Franck (2002a: 143), with permission of Springer 

 
The model in Figure 1 represents one neuron. Yet what is represented? 

Not the soma, nor the axon, nor the dendrites, nor the gene nuclei, nor the mem-
brane, nor the shape of the neuron, nor the way that the various parts of the neuron 
work together. Starting from the observation of some main properties of the neu-
ron, McCulloch and Pitts tried to represent its functional architecture, without 
which these properties could not come about as they do.  

Five functions were identified: receiving the stimuli x1, x2, … xN; 
weighting them by synaptic coefficients w1, w2, … wN; calculating the sum of 
weighted stimuli received (p); fixing a threshold of stimulation (σ) below which 
transmission does not occur; and finally computing the exit signal s. These func-
tions are arranged in a specific order: the weighting of stimuli must precede the 
calculation of the weighted sum, and so on. Thus, more precisely, the McCulloch 
and Pitts model represents the functional structure of the process generating the 
observed outcomes of the neuron.  Note that such a model ignores the combination 
of factors or causes that fulfil these functions – it is wholly conceptual. 

Let us now have a look at reverse engineering11. Reverse engineering fol-
lows a similar path: inducing the design of a device from its end products. Its orig-
inal aim is to make a new device that does the same thing as the device studied. At 
first glance, modelling the functional structure of a device from its products in or-
der to make similar products through new procedures is very far from what 
McCulloch and Pitts achieved, since they were not driven to manufacture some ar-
tificial neuron. Yet they have followed the same method: they inferred from the 
neuron’s properties the structure of functions without which these properties could 
not be as they are (Franck, 2002b). 

                                                           
11 Reverse engineering denotes today diverse research practices varying with the areas of appli-
cation. We refer to its initial sense. 
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This method is the one which has been conceived by the classical pro-
gramme of scientific research: from the sustained observation of some property of 
nature (light, heat, motion…) we try to infer – to induce12 – the functional struc-
ture – in classical terms the axiom, form, principle, or law – which rules the pro-
cess generating this property. We may, at present, qualify this method as function-
al-mechanistic to underline that it aims to model the structure of functions that 
rules the mechanism – the process – generating some property of nature.  

For social properties, the method involves modelling the structure of the 
social functions (the ‘first’ one, the ‘lesser’ and the ‘middle’ in Bacon’s terms) 
that rule the social process generating these properties, and without which these 
social properties could not become as they are. For example, regarding variations 
of population size and structure, for example, demographers uncovered the ‘first’ 
principle of the generating processes, namely some combination – which remains 
to be discovered – of three functions: fertility, mortality, and migration.  

The ‘law’ of supply and demand, as another example, is the ‘first’ struc-
ture of functions which was inferred (induced) by Adam Smith from the observa-
tion of markets: it rules the process of social exchanges generating the market. 
Karl Marx inferred the general structure of functions ruling the process that gener-
ates industrial production from a thorough historical study of the technical and so-
cial organisation: this ‘first’ principle consists of separating labour and capital. 
Finally, Durkheim inferred the integration theory from a sustained statistical anal-
ysis of the differences in suicide rates between several social milieus: the social 
process which generates suicides, whichever their causes, is ruled by the integra-
tion of the individual agents. The application of the classical programme led to 
these prominent theoretical results at the height of social sciences.  

Next, the functional structure governing the process generating some so-
cial property, once established as well as possible, may guide us in identifying and 
modelling the social factors which – in some singular, historical situation – have 
contributed to that process. We may restrict our causal investigation to those vari-
ables which plausibly contributed to the combination of functions required for 
generating the property under study. For example, what social factors (events, 
agents’ behaviour, etc.) led to a weakening of the integration of people in some 
social milieu, and contributed to the increase of suicide? Another example: when 
we investigate the ups and downs of the market, we no longer ought to interrogate 
every plausible factor influencing these variations; instead, it may suffice to inves-
tigate and model the factors implied in supply and demand. In demography it is 
the functions of fertility, mortality and migration which actually delimit its param-
eter space and channel the empirical investigation of demographic properties. 
                                                           
12 Bacon’s induction is regularly confounded with induction by philosophers in its usual sense of 
generalisation. Bacon wrote: “In establishing axioms, another form of induction must be devised 
than has hitherto been employed, and it must be used for proving and discovering not first prin-
ciples (as they are called) only, but also the lesser axioms, and the middle, and indeed all. For the 
induction which proceeds by simple enumeration is childish; its conclusions are precarious and 
exposed to peril from a contradictory instance; and it generally decides on too small a number of 
facts, and on those only which are at hand.” (Bacon 1620; aphorism 105). 
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Against this background, we propose that the model-based research pro-
gramme should proceed in accordance with the classical inductive programme, 
which we qualify as functional-mechanistic. Model building should start with a 
collection of all relevant empirical information about the social property under 
study. This would serve as the basis with which to infer the formal functional 
structure of the social property in question. Once the structure is modelled it can 
serve to guide the modelling – also simulation modelling – of the interactions be-
tween the systems of individuals, groups and institutions, combining the bottom-
up and top-down relationships, and feedbacks between them (Franck 2002a). 

The key stages of the inductive functional-mechanistic approach are 
shown in Figure 2. The solid arrows denote the four main stages of the process. 
Their implementation leads to the execution, and analysis of a computational 
model designed on the basis of a functional structure of the population processes 
under study, and derived from empirical observations. The dotted lines depict a 
possible feedback: the model results can guide the process of further data collec-
tion on particular aspects of the process that have not been included in the model. 
Obtaining more information would enable revisiting the inferred functional struc-
ture, as well as the resultant conceptual, mathematical, and computational models. 
Thus, the proposed approach could be seen as iterative, with successive modelling 
iterations enabling the researchers to identify gaps in existing knowledge and to 
fill these gaps by conducting further observations of the processes of interest.  

 
Fig. 2 Key stages of the inductive functional-mechanistic approach to model-based demography 

The proposed approach is in line with the suggestion of Conte et al. 
(2012, p. 342) that “… data can be used to check and validate the results of simu-
lation models and socio-economic theories, but a further step in using them is to 
take them into account already at the modelling stage.” A careful experimental de-
sign becomes therefore a crucial part of the modelling process, and statistical 
methods, such as those discussed earlier in this chapter, need to become embedded 
in the model construction process, rather than being used only as a validation tool.  
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5. Towards a Research Agenda for Demography 

The resulting research agenda we would like to propose for demography is based 
on three key pillars: (1) adherence to the classical programme of scientific en-
quiry; (2) enhancement of the ways in which demographic phenomena are meas-
ured and interpreted; and (3) the use of formal models, based on the functional-
mechanistic principles, as fully-fledged tools of population enquiries. 

According to several authors demography should become interdiscipli-
nary in order to compensate its perceived shortcomings (e.g. Petit and Charbit, 
2012). Demography should borrow information, methods, and theories from other 
social sciences. Although we approve a cautious recourse, when needed, to other 
disciplines, we have to underline that the solution to the weaknesses of current 
demographic practices cannot be found in theories and methods borrowed from 
other social sciences, since the last share similar weaknesses (e.g. Moss and Ed-
monds, 2005). All of these are confronted, just as in demography, with the com-
plexity of society; they suffer from uncertainty in collecting and treating infor-
mation often more than in population sciences; and their theories are hard to settle. 
The history of social sciences since the mid of 20th century teaches us that many 
innovative ‘theories’ had a generally short life, or at best remain heavily contro-
versial. Moreover, the flowering of such ‘theories’ nourishes the proliferation of 
heterogeneous explanations and seem to increase the complexity and the uncer-
tainty which undermines social sciences. 

On the contrary, the first of the pillars of the proposed research agenda – 
the classical programme of scientific research – helps overcome the complexity of 
society, it reduces the uncertainty of the models we are building and of the expla-
nations we are advancing, it establishes the theoretical component of research, and 
it discloses the way to generalize social models, something which is reputed to be 
an inaccessible goal in the social area. This is one of the reasons why we recom-
mend applying this method in particular in demography and population sciences.  

The belief that knowledge is something like a copy or an image is wide-
spread. The classical programme conveys a different concept of science: scientific 
research is not intended to improve or to extend our image of reality. Instead, sci-
entific research consists of discovering the principles governing the processes that 
generate some properties of nature or of society. We need to collection the best in-
formation on some property of nature – not about nature as a whole – in order to 
discover the principles governing the process that generates this property. The 
same applies for the social sciences: we need to collect the best information about 
some social property of human populations, not about human populations as a 
whole. Moreover, it is not merely information about this social property that will 
reinforce our scientific knowledge. Collecting information must be augmented by 
research on the principles – i.e. the combination (or structure) of functions – 
commanding the process generating this property. When selected in this way, the 
required informative intake varies with the property under study and it is drastical-
ly reduced, restricting at the same time the complexity of the task. The classical 
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research programme also restricts the theoretical approach to some social property 
to the modelling of the structure of functions necessary to generate this property.  

This approach provides a major criterion for selecting information, by re-
stricting our casual investigation to those variables which plausibly contributed to 
performing the combination of functions required for generating the property un-
der study. This is yet another way to overcome complexity that is delivered by the 
classical programme of science. 

Assumptions are an important source of uncertainty and nourish the pro-
liferation of explanations in the social sciences13. The classical research pro-
gramme recommends setting aside any assumptions in the guiding of scientific in-
vestigation (Baconian ‘idols’). Thus it eliminates the root of any uncertainty 
arising from assumptions. Managing research without assumptions seems difficult 
– but can be done if we resist the urge to make hypotheses. Newton argued that 
“Hypotheses are not to be regarded in experimental Philosophy” (after Ducheyne, 
2005, p. 124). This way of thinking is not in fashion today in the social sciences, 
yet it is commonplace in the natural sciences.  

The classical research programme substitutes induction for the hypothet-
ical-deductive approach. As we have seen, inductive research in its classical sense 
consists in inferring, from the sustained observation of and experimentation on 
some property of nature or population, the functional structure – in classical terms 
the axiom, form, principle, or law – which rules the process generating this proper-
ty, and without which this property could not come about as it does. This criterion 
of necessity which guides the inductive investigation of the functional structure 
ruling the social processes which generate some social property is the best guaran-
tor of the relevance of some theory, be it in the natural or in the social sciences. 

Besides reducing by far the nagging worries of complexity and uncertain-
ty characterising the social sciences today, the classical programme of science 
provides another huge advantage. By focusing on the process – or ‘mechanism’ – 
generating some natural or social property, the functional structure is treated inde-
pendently of the causal structure. Modelling each of these structures separately al-
lows us to disclose the way to generalise social models. Causal structures may 
never be generalized since populations are diverse and changing; causal structures 
are at best relatively constant. But a functional structure may be generalized in the 
sense that, whenever the same property occurs, the functional structure of its gen-
erative process ought to operate, insofar it has been established that this structure 
is really required for the property to appear14. This is the core sense of the univer-
sality and of the necessity of natural laws, but it has been regrettably distorted by 
the Humean empiricist tradition. For the founders of modern science the term law 

                                                           
13 Formulating and testing hypotheses is not wrong, in our opinion, as long as it is based on em-
pirical observations. However, throughout the present chapter we plead for abandoning the hypo-
thetical-deductive approach and for substituting it with the classical induction. 
14 The property itself may not be generalized, of course. 
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was simply a metaphorical synonym of principle15. Thus laws are fully attainable 
by the social sciences, just as by the natural sciences, insofar we are willing to re-
turn to the classical concept of scientific laws.  

The second pillar of the tentative research agenda we wish to advance 
comprises a question: how can we make better use of the measures achieved in 
demography? One of the main tasks of demography is to measure human popula-
tions: their size, density, rate of change, composition, various distributions, as well 
as the possible causes and consequences of changes in these factors16. In order to 
achieve this, demography rests largely on statistical analysis. Yet, measuring pro-
vokes an increasing dissatisfaction today. This is due, in our opinion, to a distorted 
view of measurement and quantification. Measuring population properties is judg-
ing, by way of comparisons, the amplitude of these properties regarding their po-
tentialities. Measuring also guides the induction – in the sense of the classical re-
search programme – of the principles governing these properties. 

The term “potentialities” refers to what possible effects something might 
generate in certain circumstances. These potentialities are what we have in mind, 
explicitly or not, when we are measuring – or judging – some social property17. 
Measuring may not be confounded with – nor reduced to – the mathematical, sta-
tistical or other means by which measuring is carried out (for example censuses, 
surveys or vital registration systems; see Courgeau 2013). 

In essence, we ought to multiply the measures of the social properties un-
der study – all sorts of measures which are adequate – and to improve the quality 
of our measures in order to reinforce the quality of our judgments about their po-
tentialities. This recommendation is exactly the opposite of what was proposed for 
the future of demography in recent years by some demographers (e.g. Tabutin 
2007; Charbit and Petit 2011; Petit and Charbit 2012, and others): they wish to re-
duce the importance of measuring in demography and to increase our confidence 
in judgments – assumptions – conceived without measures in other disciplines, 
and somewhat abusively called theories. 

Now we reach the third pillar of our tentative research agenda: to pro-
mote the model-based work programme, based on the functional-mechanistic ap-
proach outlined in this chapter. This approach carries with it substantial promise: 
it complements the four extant paradigms while incorporating insights gained 
from model-based science. Besides, as we see in other areas of model-based sci-
ence, the deployment of this kind of approach likely will influence future data col-
                                                           
15 The principles are traditionally named theories; this tradition goes back to Plato’s theoria, and 
reserves to the term theory the restricted sense of a corpus of principles. This is far from its pre-
sent use describing as a ‘theory’ every sort of conceptual hypothesis, or model, or explanatory 
‘mechanism’. 
16 See for example the following definition of demography (IUSSP, 1982): “the scientific study 
of human populations primarily with respect to their size, their structure and their development; 
it takes into account the quantitative aspects of their general characteristics”. 
17 Plato, who was familiar with the concept of number developed by the Pythagoreans, devel-
oped at length the idea that measuring is judging, and that we ought to recourse to measures in 
order to act wisely in politics as well as in private life (see Bassu 2009, 2011). 
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lection in demography and other population sciences, not only from surveys and 
other traditional sources, but also controlled experiments (Conte et al. 2012).  

The model-based approach provides us with the means to expand the 
range of benefits already provided by multilevel modelling. We gain deeper in-
sights into the interactions between various population systems, and we also gain 
the capacity to explore the parameter space of the simulations by generating 
“what-if” scenarios. Simulation parameters – once they result from the functional-
mechanistic approach – govern the way in which the complex, interacting social 
processes in the model work, and therefore exploring the parameter space enables 
us to investigate numerous such scenarios, which could represent policy changes, 
individual behavioural changes, societal-level changes, and similar (Silverman et 
al., 2013). Given the construction of these simulations, running them under varied 
scenarios can illustrate the unforeseen, non-linear impact of changes to these com-
plex processes. This scenario generation capability, when coupled with uncertain-
ty quantification, allows us to extend the utility and policy relevance of empirical-
ly-grounded population models beyond what is accommodated by the traditional 
approaches. In addition to addressing the ecological and atomistic fallacies, which 
is already the case in the current multilevel paradigm, we could now analyse dif-
ferent layers of interactions between population systems.  

Such approaches, relying as they do upon inference about systems and in-
teractions between them, are also well-suited to integrating both quantitative and 
qualitative data into the same simulations, as mentioned before. For example, 
qualitative information can be gathered from individuals within the population un-
der study, as a means of gaining understanding regarding individual behaviours, 
intentions, and goals, and these can inform the behavioural rules in the simulated 
population. Further, qualitative data can even be used to guide the construction or 
modification of the model itself (e.g., Polhill et al. 2010). 

In this chapter, we have discussed what we believe are the key elements 
of model-based approaches – such as their inductive character – that would be 
necessary for them to become a real addition to the toolbox of population sciences. 
If the future demography is to examine complex, multilevel interactions of differ-
ent elements of population systems seriously, computational approaches are the 
methodology of choice. However, the models constructed would need to conform 
to the rigours of scientific enquiry, rather than being based on arbitrary assump-
tions which often lack empirical basis. The model-based work programme, rooted 
in the functional-mechanistic approach, offers a general analytical framework to 
guide this process. Besides, more attention needs to be paid to the role of different 
levels of analysis, and interactions between them. If this is done correctly, the 
multilevel paradigm will gain very powerful analytical tools to study new research 
questions, related to the behaviour of complex population systems.  

The next step in developing model-based demographic approaches must 
consist of proposing some concrete solutions, analytical formalisms and practical 
guidelines for the modellers. Although this topic remains beyond the scope of the 
current chapter, in the literature there are already some promising suggestions in 
that regard. For example, Casini et al. (2011) have proposed using recursive 
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Bayesian networks as an analytical formalism for building “models for prediction, 
explanation, and control”, which are capable of describing functional mechanisms 
and causal relations, and of analysing uncertainty in coherent, probabilistic terms. 
In practice, the process of model-building can be iterative, as shown in Figure 2: 
we could start with a first approximation of a model that reproduces some well-
established qualitative features of the modelled phenomenon (‘stylised facts’), but 
should not stop there: the model could then be refined by including increasingly 
more data as they become available. These propositions are clearly worthy of in-
vestigating in the demographic context.  

Of course, it is unrealistic to expect that every piece of model-based de-
mographic research should contain all the elements discussed above. However, as 
future studies progress – and as populations under study continue to shift follow-
ing ever-changing and interacting social processes – model-based approaches to 
demography will bring about further opportunities for constructing and verifying 
the models. In this respect the linkage between empirical data on population struc-
tures and modelling the social mechanisms and interactions at the root of these 
structures becomes ever more important – and perhaps more powerful. 
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